1887

Abstract

A Gram-reaction-negative bacterial strain, designated Kb22, was isolated from agricultural soil and characterized using a polyphasic approach to determine its taxonomic position. On the basis of 16S rRNA gene sequence analysis, the strain shows highest similarity (94.39 %) to M-SX103. The highest average nucleotide identity value (71.83 %) was found with T5-12, and the highest amino acid identity value (66.65 %) was found with HAL-9. Cells are aerobic, non-motile rods. The isolate was found to be positive for catalase and oxidase tests. The assembled genome of strain Kb22 has a total length of 4,06 Mb, the DNA G+C content is 38.1 mol%. The only isoprenoid quinone is menaquinone 7 (MK-7). The major fatty acids are iso-C (28.4%), summed feature 3 (C ω7 and/or iso-C 2-OH) (25.7 %) and iso-C 3-OH (19.7 %). Based on phenotypic characteristics and phylogenetic results, it is concluded that strain Kb22 is a member of the genus and represents a novel species for which the name sp. nov. is proposed. The type strain of the species is strain Kb22 (=LMG 31574=NCAIM B.02638).

Funding
This study was supported by the:
  • Nemzeti Kutatási, Fejlesztési és Innovaciós Alap (Award 16-1-2016-0009)
    • Principle Award Recipient: JózsefKukolya
  • Magyar Tudományos Akadémia (Award BO/00342/18)
    • Principle Award Recipient: ÁkosTóth
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005105
2021-11-15
2024-04-29
Loading full text...

Full text loading...

References

  1. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K et al. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 1998; 48 Pt 1:165–177 [View Article]
    [Google Scholar]
  2. Garcia-Lopez M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 2019; 10:2083 [View Article]
    [Google Scholar]
  3. Euzéby JP. List of Bacterial Names with Standing in Nomenclature: a folder available on the internet. Int J Syst Bacteriol 1997; 47:590–592 [View Article]
    [Google Scholar]
  4. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article]
    [Google Scholar]
  5. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 1983; 33:580–598 [View Article]
    [Google Scholar]
  6. Wauters G, Janssens M, De Baere T, Vaneechoutte M, Deschaght P. Isolates belonging to CDC group II-i belong predominantly to Sphingobacterium mizutaii Yabuuchi et al. 1983: emended descriptions of S. mizutaii and of the genus Sphingobacterium. Int J Syst Evol Microbiol 2012; 62:2598–2601 [View Article] [PubMed]
    [Google Scholar]
  7. Jiang S, Chen M, Su S, Yang M, Li A et al. Sphingobacterium arenae sp. nov., isolated from sandy soil. Int J Syst Evol Microbiol 2014; 64:248–253 [View Article] [PubMed]
    [Google Scholar]
  8. Lee DH, Hur JS, Kahng HY. Sphingobacterium cladoniae sp. nov., isolated from lichen, Cladonia sp., and emended description of Sphingobacterium siyangense. Int J Syst Evol Microbiol 2013; 63:755–760 [View Article] [PubMed]
    [Google Scholar]
  9. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  10. Stackebrandt E, Ebers J. Taxonomic parameters revisited: Tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  11. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  12. Tóth Á, Baka E, Bata-Vidács I, Luzics S, Kosztik J et al. Micrococcoides hystricis gen. nov., sp. nov., a novel member of the family Micrococcaceae, phylum Actinobacteria. Int J Syst Evol Microbiol 2017; 67:2758–2765 [View Article] [PubMed]
    [Google Scholar]
  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  14. Liu J, Yang LL, Xu CK, Xi JQ, Yang FX et al. Sphingobacterium nematocida sp. nov., a nematicidal endophytic bacterium isolated from tobacco. Int J Syst Evol Microbiol 2012; 62:1809–1813 [View Article] [PubMed]
    [Google Scholar]
  15. Ten LN, Liu Q-M, Im W-T, Aslam Z, Lee S-T. Sphingobacterium composti sp. nov., a novel DNase-producing bacterium isolated from compost. J Microbiol Biotechnol 2006; 16:1728–1733
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 198016111–120 [View Article] [PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018351547–1549 [View Article] [PubMed]
    [Google Scholar]
  19. Szuroczki S, Khayer B, Sproer C, Toumi M, Szabo A et al. Arundinibacter roseus gen. nov., sp. nov., a new member of the family Cytophagaceae. Int J Syst Evol Microbiol 2019; 69:2076–2081 [View Article] [PubMed]
    [Google Scholar]
  20. Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res 2018; 46:W282–W288 [View Article]
    [Google Scholar]
  21. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  22. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 2016; 44:D733–45 [View Article]
    [Google Scholar]
  23. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  24. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article]
    [Google Scholar]
  25. Liu B, Yang X, Sheng M, Yang Z, Qiu J et al. Sphingobacterium olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2020; 70:1931–1939 [View Article] [PubMed]
    [Google Scholar]
  26. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The Carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014; 42:D490–D495 [View Article]
    [Google Scholar]
  27. Blum M, Chang H, Chuguransky S, Grego T, Kandasaamy S et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 2020; 49:D344–D354 [View Article]
    [Google Scholar]
  28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  29. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for bacteria and archaea based on a standard genome relatedness index. mBio 2020; 11:e02475-19 [View Article]
    [Google Scholar]
  30. Gupta RS, Patel S, Saini N, Chen S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int J Syst Evol Microbiol 2020; 70:5753–5798 [View Article]
    [Google Scholar]
  31. Lawson PA, Rainey FA. Proposal to restrict the genus Clostridium Prazmowski to Clostridium butyricum and related species. Int J Syst Evol Microbiol 2016; 66:1009–1016 [View Article]
    [Google Scholar]
  32. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME et al. Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 2020; 70:4432–4450 [View Article]
    [Google Scholar]
  33. Alanjary M, Steinke K, Ziemert N. Automlst: An automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article]
    [Google Scholar]
  34. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  35. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  36. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  39. Garcia-Lopez M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 2019; 10:2083 [View Article] [PubMed]
    [Google Scholar]
  40. Siddiqi MZ, Liu Q, Kang MS, Kim MS, Im WT. Anseongella ginsenosidimutans gen. nov., sp. nov., isolated from soil cultivating ginseng. Int J Syst Evol Microbiol 2016; 66:1125x–11130 [View Article]
    [Google Scholar]
  41. Prasad S, Manasa BP, Buddhi S, Pratibha MS, Begum Z et al. Arcticibacter svalbardensis gen. nov., sp. nov., of the family Sphingobacteriaceae in the phylum Bacteroidetes, isolated from Arctic soil. Int J Syst Evol Microbiol 2013; 63:1627–1632 [View Article] [PubMed]
    [Google Scholar]
  42. Pankratov TA, Tindall BJ, Liesack W, Dedysh SN. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 2007; 57:2349–2354 [View Article] [PubMed]
    [Google Scholar]
  43. Asker D, Beppu T, Ueda K. Nubsella zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Sphingobacteriaceae isolated from freshwater. Int J Syst Evol Microbiol 2008; 58:601–606 [View Article] [PubMed]
    [Google Scholar]
  44. Ntougias S, Fasseas C, Zervakis GI. Olivibacter sitiensis gen. nov., sp. nov., isolated from alkaline olive-oil mill wastes in the region of Sitia, Crete. Int J Syst Evol Microbiol 2007; 57:398–404 [View Article] [PubMed]
    [Google Scholar]
  45. Kim MK, Na JR, Cho DH, Soung NK, Yang DC. Parapedobacter koreensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2007; 57:1336–1341 [View Article] [PubMed]
    [Google Scholar]
  46. Cai YY, Dong WW, Hu YL, Jiang X, Wang YW et al. Pararcticibacter amylolyticus gen. nov., sp. nov., isolated from a rotten hemp rope, and reclassification of Pedobacter tournemirensis as Pararcticibacter tournemirensis comb. nov. Curr Microbiol 2020; 77:320–326 [View Article] [PubMed]
    [Google Scholar]
  47. Xia X, Wu S, Han Y, Liao S, Wang G. Pelobium manganitolerans gen. nov., sp. nov., isolated from sludge of a manganese mine. Int J Syst Evol Microbiol 2016; 66:4954–4959 [View Article] [PubMed]
    [Google Scholar]
  48. Vaz-Moreira I, Nobre MF, Nunes OC, Manaia CM. Pseudosphingobacterium domesticum gen. nov., sp. nov., isolated from home-made compost. Int J Syst Evol Microbiol 2007; 57:1535–1538 [View Article] [PubMed]
    [Google Scholar]
  49. Weon HY, Kim BY, Lee CM, Hong SB, Jeon YA et al. Solitalea koreensis gen. nov., sp. nov. and the reclassification of [Flexibacter] canadensis as Solitalea canadensis comb. nov. Int J Syst Evol Microbiol 2009; 59:1969–1975 [View Article] [PubMed]
    [Google Scholar]
  50. Xu L, Sun JQ, Wang LJ, Gao ZW, Sun LZ et al. Sphingobacterium alkalisoli sp. nov., isolated from a saline-alkaline soil. Int J Syst Evol Microbiol 2017; 67:1943–1948 [View Article] [PubMed]
    [Google Scholar]
  51. Daood HG, Biacs AP. Simultaneous determination of Sudan dyes and carotenoids in red pepper and tomato products by HPLC. J Chromatogr Sci 2005; 43:461–465 [View Article] [PubMed]
    [Google Scholar]
  52. Bernardet JF, Bowman PJ. The prokaryotes: A handbook on the biology of bacteria. Proteobacteria: Delta and epsilon subclasses. Deeply Rooted Bacteria 2006; 7:481–532
    [Google Scholar]
  53. Buck JD. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  54. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press; 2004
    [Google Scholar]
  55. Vallenet D, Engelen S, Mornico D, Cruveiller S, Fleury L et al. Microscope: A platform for microbial genome annotation and comparative genomics. Database 2009; 2009:bap021 [View Article] [PubMed]
    [Google Scholar]
  56. Miller LT. A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article] [PubMed]
    [Google Scholar]
  57. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Evol Microbiol 1988; 38:358–361
    [Google Scholar]
  58. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  59. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Letts 1990; 66:199–202
    [Google Scholar]
  60. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology 2007 pp 330–393
    [Google Scholar]
  61. Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article]
    [Google Scholar]
  62. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–667 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005105
Loading
/content/journal/ijsem/10.1099/ijsem.0.005105
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error