1887

Abstract

A novel bacterium, designated strain CAU 1637, was isolated from a tidal mudflat. Cells of strain CAU 1637 were Gram-stain-negative, aerobic, motile with single flagellum and rod-shaped. The optimum conditions for growth were observed at 30 °C, pH 6.0 and in the presence of 2 % (w/v) NaCl. The respiratory quinone was ubiquinone-10. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CAU 1637 was closely related to the genus , with the highest similarity to NRBC 112946 (97.4 %), followed by NRBC 16783 (96.8 %), JCM 19310 (96.4 %), KCTC 52373 (95.8 %) and JCM 10543 (95.3 %). The predominant cellular fatty acids were C 7 11-methyl and summed feature 8 (C 7 and/or C 6). The major polar lipids consisted of diphosphatidylglycerol and phosphatidylglycerol. The average nucleotide identity values between the novel isolate and related strains ranged from 71.0 to 76.4 %, and the DNA−DNA hybridization values ranged from 19.3 to 20.3 %. The G+C content was 58.4 mol% and the whole-genome size was 4.6 Mb, which included 17 contigs and 3931 protein-coding genes. Based on the taxonomic data, strain CAU 1637 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CAU 1637 (=KCTC 82429=MCCC 1K06080).

Funding
This study was supported by the:
  • Chung-Ang University (Award 2020)
    • Principle Award Recipient: VeerayaWeerawongwiwat
  • National Institute of Biological Resources (Award NIBR202002203)
    • Principle Award Recipient: WonyongKim
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005097
2021-11-30
2024-05-06
Loading full text...

Full text loading...

References

  1. Suzuki T, Muroga Y, Takahama M, Nishimura Y. Roseigium denhamense gen. nov., sp. nov. and Roseibium hemelinense sp. nov., aerobic bacteriochlorophyll-containing bacteria isolated from the east and west coasts of Australia. Int J Syst Evol Microbiol 2000; 50 Pt 6:2151–2156 [View Article] [PubMed]
    [Google Scholar]
  2. Uchino Y, Hirata A, Yokota A, Sugiyama J. Reclassification of marine Agrobacterium species: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregate sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 1998; 44:201–210 [View Article] [PubMed]
    [Google Scholar]
  3. Liu J, Wang Y, Yang X, Sun Z, Ren Q et al. Roseibium sediminis sp. nov., isolated from sea surface sediment. Int J Syst Evol Microbiol 2017; 67:2862–2867 [View Article] [PubMed]
    [Google Scholar]
  4. Duan L, Li J-l, Li X, Dong L, Fang B-Z et al. Roseibium aestuarii sp. nov., isolated from Pearl River Estuary. Int J Syst Evol Microbiol 2020; 70:2896–2900 [View Article] [PubMed]
    [Google Scholar]
  5. Pujalte MJ, Macián MC, Arahal DR, Garay E. Stappia alba sp. nov., isolated from Mediterranean oysters. Syst Appl Microbiol 2005; 28:672–678 [View Article] [PubMed]
    [Google Scholar]
  6. Biebl H, Pukall R, Lünsdorf H, Schulz S, Allgaier M et al. Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense. Int J Syst Evol Microbiol 2007; 57:1095–1107 [View Article] [PubMed]
    [Google Scholar]
  7. Zhong Z-P, Liu Y, Liu H-C, Wang F, Zhou Y-G et al. Roseibium aquae sp. nov., isolated from a saline lake. Int J Syst Evol Microbiol 2014; 64:2812–2818 [View Article] [PubMed]
    [Google Scholar]
  8. Kim B-C, Park JR, Bae J-W, Rhee S-K, Kim K-H et al. Stappia marina sp. nov., a marine bacterium isolated from the Yellow Sea. Int J Syst Evol Microbiol 2006; 56:75–79 [View Article] [PubMed]
    [Google Scholar]
  9. Liu Y, Pei T, Du J, Chao M, Deng M-R et al. Roseibium littorale sp. nov., isolated from a tidal flat sediment and proposal for the reclassification of Labrenzia polysiphoniae as Roseibium polysiphoniae comb. nov. Int J Syst Evol Microbiol 2021; 71:004634
    [Google Scholar]
  10. Romanenko LA, Kurilenko VV, Guzev KV, Svetashev VI. Characterization of Labrenzia polysiphoniae sp. nov. isolated from red alga Polysiphonia sp. Arch Microbiol 2019; 201:705–712 [View Article] [PubMed]
    [Google Scholar]
  11. Camacho M, Redondo-Gómez S, Rodríguez-Llorente I, Rohde M, Spröer C et al. Labrenzia salina sp. nov., isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum. Int J Syst Evol Microbiol 2016; 66:5173–5180 [View Article] [PubMed]
    [Google Scholar]
  12. Bibi F, Jeong JH, Chung EJ, Jeon CO, Chung YR. Labrenzia suaedae sp. nov., a marine bacterium isolated from a halophyte, and emended description of the genus Labrenzia. Int J Syst Evol Microbiol 2014; 64:1116–1122 [View Article] [PubMed]
    [Google Scholar]
  13. Park S, Park J-M, Oh T-K, Yoon J-H. Altererythrobacter insulae sp. nov., a lipolytic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2019; 69:1009–1015 [View Article] [PubMed]
    [Google Scholar]
  14. Baek J, Kim J-H, Yoon J-H, Lee J-S, Sukhoom A et al. Arenibacterium halophilum gen. nov., sp. nov., a halotolerant bacterium in the family Rhodobacteraceae isolated from a coastal sand dune. Int J Syst Evol Microbiol 2020; 70:6323–6330 [View Article] [PubMed]
    [Google Scholar]
  15. Nam S-W, Kim W, Chun J, Goodfellow M. Tsukamurella pseudospumae sp. nov., a novel actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 2004; 54:1209–1212 [View Article] [PubMed]
    [Google Scholar]
  16. Lane DJ. 16S/23S rRNA sequencing. Stackebrandt E, Goodfellow M. eds In Nucleic Acid Techniques in Bacterial Systematics Chichester, UK: John Wiley & Sons; 1991 pp 115–175
    [Google Scholar]
  17. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  21. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies, an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  23. Jukes TH, Cantor CR. Evolution of protein molecules. Munro HN. eds In Mammalian Protein Metabolism vol 3 London: Academic Press; 1969 pp 133–182
    [Google Scholar]
  24. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  25. Lee I, Ouk Kim Y, Park S-C, Chun J. Orthoani: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  26. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  27. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  28. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–7 [View Article] [PubMed]
    [Google Scholar]
  29. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  30. Helfrich EJ, Vogel CM, Ueoka R, Schäfer M, Ryffel F et al. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat Microbiol 2018; 3:909–919 [View Article] [PubMed]
    [Google Scholar]
  31. Cheng YQ, Coughlin JM, Lim SK, Shen B. Type I polyketide synthases that require discrete acyltransferases. Methods Enzymol 2009; 459:165–186 [View Article] [PubMed]
    [Google Scholar]
  32. Szabó I, Al-Omari J, Szerdahelyi GS, Radó J, Kaszab E et al. Dyadobacter subterraneus sp. nov., isolated from hydrocarbon-polluted groundwater from an oil refinery in Hungary. Int J Syst Evol Microbiol 2021; 71:004916 [View Article]
    [Google Scholar]
  33. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 2013; 30:108–160 [View Article] [PubMed]
    [Google Scholar]
  34. D’Souza-Ault MR, Smith GM, Smith GM. Roles of N-acetylglutaminylglutamine amide and glycine betaine in adaptation of Pseudomonas aeruginosa to osmotic stress. Appl Environ Microbiol 1993; 59:473–478 [View Article] [PubMed]
    [Google Scholar]
  35. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  36. Li M, Kong D, Wang Y, Ma Q, Han X et al. Photobacterium salinisoli sp. nov., isolated from a sulfonylurea herbicide-degrading consortium enriched with saline soil. Int J Syst Evol Microbiol 2019; 69:3910–3916 [View Article] [PubMed]
    [Google Scholar]
  37. Smibert RM, Krieg NR. Phenotypic characterization. Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  38. Lányi B. 1 classical and rapid identification methods for medically important bacteria. Methods Microbiol 1988; 19:1–67
    [Google Scholar]
  39. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  40. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  41. Sasser M. Bacterial Identification by Gas Chromatographic Analysis of Fatty Acid Methyl Esters (GC-FAME) Newark, DE: MIDI, Inc; 2006 p 6
    [Google Scholar]
  42. Embley TM, Wait R. Structural lipids of eubacteria. Goodfellow M, O’Donnell GA. eds In Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester, UK: John Wiley & Sons; 1994 pp 121–161
    [Google Scholar]
  43. Kim W, Ward AC, Kim W. Kagiella chungangensis sp. nov. isolated from a marine sand. Antonie van Leeuwenhoek 2015; 107:1291–1298 [View Article]
    [Google Scholar]
  44. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005097
Loading
/content/journal/ijsem/10.1099/ijsem.0.005097
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error