1887

Abstract

Amoebozoan parasites of arrow-worms (Chaetognatha) were isolated from their hosts living in plankton of the Bay of Villefranche (Mediterranean Sea). Based on the light microscopic characters, the amoebae were identified as (Grassi, 1881) by their limax locomotive form and due to the presence of the intracellular symbiont, , surrounded by a layer of pigment granules. Sequences of the 18S rRNA gene of both and its symbiont were obtained for the first time. The molecular phylogenetic analyses of 18S rRNA gene placed within the genus , a taxon also characterized by the presence of a symbiont, known as -like organism (PLO). The 18S rRNA gene sequence of from grouped with the sequences of 18S rRNA genes of PLOs from and . The first photo documentation of the light microscopic features of , such as locomotive form, the morphology of the nucleus and have been provided. The new results support the affinity of with the family Paramoebidae suggested previously based on the presence of PLO. In contrast to , typical members of Paramoebidae ( and ) have a flattened, dactylopodial locomotive form. This discrepancy in morphology can be explained by the obligate parasitic lifestyle of .

Funding
This study was supported by the:
  • Russian Academy of Sciences (Award АААА-А19-119031390116-9)
  • Russian Foundation for Basic Research (Award 18-34-00726-mol_a)
    • Principle Award Recipient: EkaterinaVolkova
  • Horizon 2020 (Award 730984)
    • Principle Award Recipient: AlexanderKudryavtsev
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005094
2021-11-30
2022-01-27
Loading full text...

Full text loading...

References

  1. Schaudinn F. ÜBer den zeugungskreis von Paramoeba eilhardi n. g. n. sp. Sitz-ber KGL Preuss Akad Wiss Berlin 1896; 14:31–41
    [Google Scholar]
  2. Grassi B. Intorno ai chetognati. Reale Ist Lomb di Sci e Lett 1881; 2:185–224
    [Google Scholar]
  3. Janicki C. Untersuchungen an parasitischen Arten der gattung Paramoeba Schaudinn. Basel Verh Naturforsch Ges 1912; 23:6–21
    [Google Scholar]
  4. Chatton E. Classe Des lobosa leidy, 1879. Ordre des Amoebiens nus ou amoebaea. Traité de Zoologie 1953; 1:5–91
    [Google Scholar]
  5. Hamon M. Note sur Janickina pigmentifera (Grassi, 1881) amibe parasite du segment génital mâle de Sagitta. Bull Soc Hist Nat Afr N 1957; 48:220–233
    [Google Scholar]
  6. Hollande A. Identification du parasome (Nebenkern) de Janickina pigmentifera a un symbionte (Perkinsiella amoebae nov gen - nov sp.) apparenté aux flagellés kinetoplastidies. Protistologica 1980; 16:613–625
    [Google Scholar]
  7. Dyková I, Fiala I, Pecková H. Neoparamoeba spp. and their eukaryotic endosymbionts similar to Perkinsela amoebae (Hollande, 1980): coevolution demonstrated by SSU rRNA gene phylogenies. Eur J Protistol 2008; 44:269–277 [View Article] [PubMed]
    [Google Scholar]
  8. Dyková I, Fiala I, Lom J, Lukeš J. Perkinsiella amoebae-like endosymbionts of Neoparamoeba spp., relatives of the kinetoplastid Ichthyobodo. Eur J Protistol 2003; 39:37–52 [View Article]
    [Google Scholar]
  9. Grell KG, Benwitz G. Die zellhülle von Paramoeba eilhardi Schaudinn. Z Naturforsch B 1966; 21:600–601
    [Google Scholar]
  10. Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol 2019; 66:4–119 [View Article] [PubMed]
    [Google Scholar]
  11. Kasatkina AP. Shchetinkochelyustnye morei SSSR i sopredelnykh vod [Chaetognatha of the Seas of the USSR and Adjacent Waters] (in Russian) Leningrad Nauka: 1982
    [Google Scholar]
  12. Maniatis T, Fritsch EF, Sambrook J. Molecular cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. Medlin L, Elwood HJ, Stickel S, Sogin ML. The characterization of enzymatically amplified eukaryotic 16S-like rRNA coding regions. Gene 1988; 71:491–499 [View Article] [PubMed]
    [Google Scholar]
  14. Pawlowski J. Introduction to the molecular systematics of foraminifera. Micropaleontology 2000; 46:1–12
    [Google Scholar]
  15. Adl SM, Habura A, Eglit Y. Amplification primers of SSU rDNA for soil protists. Soil Biol Biochem 2014; 69:328–342
    [Google Scholar]
  16. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 1994; 3:294–299 [PubMed]
    [Google Scholar]
  17. Volkova E, Völcker E, Clauß S, Bondarenko N, Kudryavtsev A. Paramoeba aparasomata n. sp., a symbiont-free species, and its relative Paramoeba karteshi n. sp. (Amoebozoa, Dactylopodida). Eur J Protistol 2019; 71:125630 [View Article] [PubMed]
    [Google Scholar]
  18. Kudryavtsev A, Pawlowski J. Cunea n. g. (Amoebozoa, Dactylopodida) with two cryptic species isolated from different areas of the ocean. Eur J Protistol 2015; 51:197–209 [View Article] [PubMed]
    [Google Scholar]
  19. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  20. Gouy M, Guindon S, Gascuel O. SeaView Version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27:221–224 [View Article] [PubMed]
    [Google Scholar]
  21. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  22. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [View Article] [PubMed]
    [Google Scholar]
  23. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE). Gateway Computing Environments Workshop 20101–8
    [Google Scholar]
  24. Smirnov A, Chao E, Nassonova E, Cavalier-Smith T. A revised classification of naked lobose amoebae (Amoebozoa: lobosa). Protist 2011; 162:545–570 [View Article] [PubMed]
    [Google Scholar]
  25. Smirnov A, Nassonova E, Berney C, Fahrni J, Bolivar I et al. Molecular phylogeny and classification of the Lobose amoebae. Protist 2005; 156:129–142 [View Article] [PubMed]
    [Google Scholar]
  26. Grębecki A. Locomotion of Saccamoeba limax. Arch Protistenkd 1987; 134:347–365 [View Article]
    [Google Scholar]
  27. Page FC. The classification of ‘naked’ amoebae (phylum Rhizopoda). Arch Protistenkd 1987; 133:199–217
    [Google Scholar]
  28. Dyková I, Nowak B, Crosbie P, Fiala I, Pecková H et al. Neoparamoeba branchiphila n. sp., and related species of the genus Neoparamoeba Page, 1987: morphological and molecular characterization of selected strains. J Fish Dis 2005; 28:49–64 [View Article] [PubMed]
    [Google Scholar]
  29. Kudryavtsev A, Pawlowski J, Hausmann K. Description of Paramoeba atlantica n. sp. (Amoebozoa, Dactylopodida) - a marine amoeba from the Eastern Atlantic, with emendation of the dactylopodid families. Acta Protozool 2011; 50:239–253
    [Google Scholar]
  30. Volkova E, Kudryavtsev A. Description of Neoparamoeba longipodia n. sp. and a new strain of Neoparamoeba aestuarina (Page, 1970) (Amoebozoa, Dactylopodida) from deep-sea habitats. Eur J Protistol 2017; 61:107–121 [View Article] [PubMed]
    [Google Scholar]
  31. Cann JP, Page FC. Fine structure of small free-living paramoeba (amoebida) and taxonomy of the genus. J Mar Biol Ass 2009; 62:25–43 [View Article]
    [Google Scholar]
  32. Dyková I, Figueras A, Peric Z. Neoparamoeba Page, 1987: light and electron microscopic observations on six strains of different origin. Dis Aquat Org 2000; 43:217–223 [View Article]
    [Google Scholar]
  33. Sibbald SJ, Cenci U, Colp M, Eglit Y, O’Kelly CJ et al. Diversity and evolution of Paramoeba spp. and their kinetoplastid endosymbionts. J Eukaryot Microbiol 2017; 64:598–607 [View Article] [PubMed]
    [Google Scholar]
  34. Feehan CJ, Johnson-Mackinnon J, Scheibling RE, Lauzon-Guay JS, Simpson AG. Validating the identity of Paramoeba invadens, the causative agent of recurrent mass mortality of sea urchins in Nova Scotia, Canada. Dis Aquat Org 2013; 103:209–227 [View Article]
    [Google Scholar]
  35. Young ND, Dyková I, Crosbie PBB, Wolf M, Morrison RN et al. Support for the coevolution of Neoparamoeba and their endosymbionts, Perkinsela amoebae-like organisms. Eur J Protistol 2014; 50:509–523 [View Article] [PubMed]
    [Google Scholar]
  36. Strodtmann S. Die Systematik der chaetognathen [The systematics of the chaetognathen] (in German). Archiv Naturg Ano 1892; 58:333–377
    [Google Scholar]
  37. Tokioka T. The taxonomical outline of chaetognaths. Publ Seto Marine Biol Lab 1965; 12:335–357
    [Google Scholar]
  38. Bone Q, Kapp H, Pierrot-Bults AC. Biology of Chaetognaths Oxford University Press; 1991
    [Google Scholar]
  39. Reeve MR, Cosper TC, Walter MA. Visual observations on the process of digestion and the production of faecal pellets in the chaetognath Sagitta hispida Conant. J Exp Mar Biol Ecol 1975; 17:39–46 [View Article]
    [Google Scholar]
  40. Ghirardelli E. Some aspects of the biology of the chaetognaths. Adv Mar Biol 1969; 6:271–375
    [Google Scholar]
  41. Nagasawa S, Marumot R. Reproduction and life history of the chaetognath Sagitta nagae Alvarino in Suruga Bay (Japan). Bull Plankton Soc Japan 1978; 25:67–84
    [Google Scholar]
  42. Hess S, Sausen N, Melkonian M. Shedding light on vampires: the phylogeny of vampyrellid amoebae revisited. PLoS One 2012; 7:e31165 [View Article] [PubMed]
    [Google Scholar]
  43. Kellen WR, Lindegren JE. Transovarian transmission of Nosema plodiae in the Indian-meal moth, Plodia interpunctella. J Invertebr Pathol 1973; 21:248–254 [View Article]
    [Google Scholar]
  44. Reeve MR. Complete cycle of development of a pelagic chaetognath in culture. Nature London 1970; 227:381 [View Article]
    [Google Scholar]
  45. Reeve MR, Walter MA. Conditions of culture, food-size selection, and the effects of temperature and salinity on growth rate and generation time in Sagitta hispida Conant. J Exp Mar Biol Ecol 1972; 9:191–200 [View Article]
    [Google Scholar]
  46. Grassi B. I Chetognati: Anatomia e sistematica con aggiunte eEmbriologiche. Memoria del dott Engelmann 1883; 5:1–145
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005094
Loading
/content/journal/ijsem/10.1099/ijsem.0.005094
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error