1887

Abstract

A rod-shaped, Gram-stain-negative, strictly anaerobic, catalase-negative and endospore-forming bacterial strain CSC2 was isolated from corn silage preserved in Tochigi, Japan. The strain CSC2 grew at 15–40 °C, at pH 5.0–7.7 and with up to 0.5 % (w/v) NaCl. The main cellular fatty acids were C, C and C dimethyl acetal. The cellular polar lipids detected were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidic acid, lysophosphatidylethanolamine, phosphatidylserine, lysophosphatidylcholine and two unidentified polar lipids. Phylogenetic analysis of the 16S rRNA gene showed that strain CSC2 was a member of the genus and closely related to DSM 57272 (95.6 % gene sequence similarity) and ATCC 19400 (95.3 %). The genomic DNA G+C content of strain CSC2 was 31.1 mol% (whole genome analysis). The average nucleotide identity based on and digital DNA–DNA hybridization values between strain CSC2 and the type strains of phylogenetically related species were below 71 and 24 %, respectively. On the basis of the genotypic, phenotypic and chemotaxonomic characteristics, it is proposed to designate strain CSC2 as representing sp. nov. The type strain is CSC2 (=MAFF212476=JCM 33766=DSM 111242).

Funding
This study was supported by the:
  • japan society for the promotion of science (Award JP21K14967)
    • Principle Award Recipient: HisamiKobayashi
  • naro gender equality program
    • Principle Award Recipient: MasanoriTohno
  • naro gender equality program
    • Principle Award Recipient: HisamiKobayashi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005088
2021-11-08
2024-04-26
Loading full text...

Full text loading...

References

  1. Ferraretto LF, Shaver RD, Luck BD. Silage review: Recent advances and future technologies for whole-plant and fractionated corn silage harvesting. J Dairy Sci 2018; 101:3937–3951 [View Article] [PubMed]
    [Google Scholar]
  2. United States Department of Agriculture-National Agricultural Statistics Service (USDA-NASS) - Quick Stats; 2019 https://quickstats.nass.usda.gov/
  3. McDonald P, Henderson N, Heron S. The Biochemistry of Silage, 2nd edn. Bucks, UK: Chalcombe Publications; 1991 pp 11–12
    [Google Scholar]
  4. Driehuis F, Wilkinson JM, Jiang Y, Ogunade I, Adesogan AT. Silage review: Animal and human health risks from silage. J Dairy Sci 2018; 101:4093–4110S0022-0302(18)30328-X [View Article] [PubMed]
    [Google Scholar]
  5. Rainey FA, Hollen BJ, Small A. Genus I. Clostridium. De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W. eds In Bergey’s Manual of Systematic Bacteriology, 2nd. edn New York: Springer; 2009 pp 738–828
    [Google Scholar]
  6. Tohno M, Kobayashi H, Nomura M, Kitahara M, Ohkuma M. Genotypic and phenotypic characterization of lactic acid bacteria isolated from Italian ryegrass silage. Anim Sci J 2012; 83:111–120 [View Article] [PubMed]
    [Google Scholar]
  7. Atlas RM. Handbook of Microbiological Media, 3rd edn. Boca Raton, FL: CRC Press LLC; 2004 pp 1444–1445
    [Google Scholar]
  8. Kobayashi H, Nakasato T, Sakamoto M, Ohtani Y, Terada F. Clostridium pabulibutyricum sp. nov., a butyric-acid-producing organism isolated from high-moisture grass silage. Int J Syst Evol Microbiol 2017; 67:4974–4978 [View Article] [PubMed]
    [Google Scholar]
  9. Chun J, Lee JH, Jung Y, Kim M, Kim S et al. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 2007; 57:2259–2261 [View Article] [PubMed]
    [Google Scholar]
  10. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  11. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  13. Tamura K, Peterson D, Peterson N, Stecher G, Nei M. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article] [PubMed]
    [Google Scholar]
  14. Felsenstein J. Confidence-limits on phylogenies - an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  15. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  16. Chen S, Zhou Y, Chen Y, Gu J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  17. Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 2014; 24:1384–1395 [View Article] [PubMed]
    [Google Scholar]
  18. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 2018; 34:1037–1039 [View Article] [PubMed]
    [Google Scholar]
  19. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  20. Tohno M, Tanizawa Y, Kojima Y, Sakamoto M, Ohkuma M. Lactobacillus corticis sp. nov., isolated from hardwood bark. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  21. Cosentino S, Iwasaki W. SonicParanoid: fast, accurate and easy orthology inference. Bioinformatics 2019; 35:149–151 [View Article] [PubMed]
    [Google Scholar]
  22. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  23. Kück P, Longo GC. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front Zool 2014; 11:81 [View Article] [PubMed]
    [Google Scholar]
  24. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019; 35:4453–4455 [View Article] [PubMed]
    [Google Scholar]
  25. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  29. Ach AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  30. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  31. Cheawchanlertfa P, Sutheeworapong S, Jenjaroenpun P, Wongsurawat T, Nookaew I. Clostridium manihotivorum sp. nov., a novel mesophilic anaerobic bacterium that produces cassava pulp-degrading enzymes. PeerJ 2020; 8:e10343 [View Article] [PubMed]
    [Google Scholar]
  32. Tohno M, Kitahara M, Uegaki R, Irisawa T, Ohkuma M. Lactobacillus hokkaidonensis sp. nov., isolated from subarctic timothy grass (Phleum pratense L.) silage. Int J Syst Evol Microbiol 2013; 63:2526–2531 [View Article] [PubMed]
    [Google Scholar]
  33. Sakamoto M, Suzuki M, Umeda M, Ishikawa I, Benno Y. Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 2002; 52:841–849 [View Article] [PubMed]
    [Google Scholar]
  34. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  35. Mal M, Wong S. A HILIC-based UPLC / MS method for the separation of lipid classes from plasma. Waters Appl Note 2011; 1–5:
    [Google Scholar]
  36. Yokota K, Fujinaga Y, Inoue K, Shimazaki S. Classification of Clostridium butyricum based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and pulsed-field gel electrophoresis. Anaerobe 1998; 4:177–181 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005088
Loading
/content/journal/ijsem/10.1099/ijsem.0.005088
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error