1887

Abstract

A novel mesophilic, strictly anaerobic, chemolithoautotrophic sulphate-reducing bacterium, designated strain KT2, was isolated from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Izu-Bonin Arc. Strain KT2 grew at 25–40 °C (optimum 35 °C) and pH 5.5–7.0 (optimum 6.6) in the presence of 25–45 g l NaCl (optimum 30 g l). Growth occurred with molecular hydrogen as the electron donor and sulphate, thiosulphate, and sulphite as the electron acceptors. The isolate utilized CO as the sole carbon source for chemolithoautotrophic growth on H. Glycerol, succinate, fumarate, malate, glutamate, or casamino acids could serve as an alternative electron donor in the presence of CO. Malate, citrate, glutamate, and casamino acids were used as fermentative substrates for weak growth. The G+C content of genomic DNA was 46.1 %. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain KT2 is a member of the family , showing a sequence similarity of 94.3 % with . Phylogenomic analysis based on concatenated 156 single-copy marker genes confirmed the same topology as the 16S rRNA gene phylogeny. The ANI and AAI values between strain KT2 and related genera of the family were 65.6–68.6 % and 53.1–62.9 %. Based on the genomic, molecular, and physiological characteristics, strain KT2 represents a novel genus and species within the family , for which the name gen. nov., sp. nov. is proposed, with KT2 (=JCM 34118 = DSM 111364) as the type strain.

Funding
This study was supported by the:
  • Japan Society for the Promotion of Science (Award 20H03322)
    • Principle Award Recipient: NakagawaSatoshi
  • Japan Society for the Promotion of Science (Award 16H04843)
    • Principle Award Recipient: NakagawaSatoshi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005083
2021-11-05
2024-05-05
Loading full text...

Full text loading...

References

  1. Kuever J, Rainey FA, Widdel F. Family II Desulfobulbaceae fam. nov. Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds In Bergey’s Manual of Systematic Bacteriology, 2nd. edn Vol 2 New York: Springer; 2005 p 988
    [Google Scholar]
  2. Kuever J, Rainey FA, Widdel F. Class IV. Deltaproteobacteria class nov. Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds In Bergey’s Manual of Systematic Bacteriology, 2nd. edn Vol 2 New York: Springer; 2005 p 922
    [Google Scholar]
  3. Widdel F, Pfennig N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol 1982; 131:360–365 [View Article]
    [Google Scholar]
  4. Janssen PH, Schuhmann A, Bak F, Liesack W. Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. Arch Microbiol 1996; 166:184–192 [View Article]
    [Google Scholar]
  5. Galushko A, Kuever J. Desulfocastanea gen. nov. In Bergey’s Manual of Systematics of Archaea and Bacteria New York: Wiley; 2019 pp 1–4
    [Google Scholar]
  6. Friedrich M, Springer N, Ludwig W, Schink B. Phylogenetic positions of Desulfofustis glycolicus gen. nov., sp. nov., and Syntrophobotulus glycolicus gen. nov., sp. nov., two new strict anaerobes growing with glycolic acid. Int J Syst Bacteriol 1996; 46:1065–1069 [View Article] [PubMed]
    [Google Scholar]
  7. Suzuki D, Ueki A, Amaishi A, Ueki K. Desulfopila aestuarii gen. nov., sp. nov., a Gram-negative, rod-like, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int J Syst Evol Microbiol 2007; 57:520–526 [View Article] [PubMed]
    [Google Scholar]
  8. Junghare M, Schink B. Desulfoprunum benzoelyticum gen. nov., sp. nov., a Gram-stain-negative, benzoate-degrading, sulfate-reducing bacterium isolated from a wastewater treatment plant. Int J Syst Evol Microbiol 2015; 65:77–84 [View Article] [PubMed]
    [Google Scholar]
  9. Isaksen MF, Teske A. Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch Microbiol 1996; 166:160–168 [View Article]
    [Google Scholar]
  10. Knoblauch C, Sahm K, Jørgensen BB. Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Bacteriol 1999; 49:1631–1643 [View Article] [PubMed]
    [Google Scholar]
  11. Sorokin DY, Tourova TP, Mußmann M, Muyzer G. Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles 2008; 12:431–439 [View Article] [PubMed]
    [Google Scholar]
  12. Lovley DR, Phillips EJP. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria. Appl Environ Microbiol 1994; 60:2394–2399 [View Article] [PubMed]
    [Google Scholar]
  13. Slobodkin AI, Slobodkina GB. Diversity of sulfur-disproportionating microorganisms. Microbiology 2019; 88:509–522 [View Article]
    [Google Scholar]
  14. Finster K, Liesack W, Thamdrup BO. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microbiol 1998; 64:119–125 [View Article] [PubMed]
    [Google Scholar]
  15. Gittel A, Seidel M, Kuever J, Galushko AS, Cypionka H et al. Desulfopila inferna sp. nov., a sulfate-reducing bacterium isolated from the subsurface of a tidal sand-flat. Int J Syst Evol Microbiol 2010; 60:1626–1630 [View Article] [PubMed]
    [Google Scholar]
  16. Jørgensen BB. Mineralization of organic matter in the sea bed—The role of sulphate reduction. Nature 1982; 296:643–645 [View Article]
    [Google Scholar]
  17. Widdel F, Bak F. Gram-negative mesophilic sulfate-reducing bacteria. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K. eds The Prokaryotes New York: Springer; 1992 pp 3352–3378
    [Google Scholar]
  18. Dhillon A, Teske A, Dillon J, Stahl DA, Sogin ML. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 2003; 69:2765–2772 [View Article] [PubMed]
    [Google Scholar]
  19. Nakagawa T, Ishibashi JI, Maruyama A, Yamanaka T, Morimoto Y et al. Analysis of dissimilatory sulfite reductase and 16S rRNA gene fragments from deep-sea hydrothermal sites of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific. Appl Environ Microbiol 2004; 70:393–403 [View Article] [PubMed]
    [Google Scholar]
  20. Nakagawa T, Nakagawa S, Inagaki F, Takai K, Horikoshi K. Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures. FEMS Microbiol Lett 2004; 232:145–152 [View Article] [PubMed]
    [Google Scholar]
  21. Nercessian O, Bienvenu N, Moreira D, Prieur D, Jeanthon C. Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments. Environ Microbiol 2005; 7:118–132 [View Article] [PubMed]
    [Google Scholar]
  22. Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA et al. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 1994; 372:455–458 [View Article] [PubMed]
    [Google Scholar]
  23. Jeanthon C, L’Haridon S, Cueff V, Banta A, Reysenbach AL et al. Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int J Syst Evol Microbiol 2002; 52:765–772 [View Article] [PubMed]
    [Google Scholar]
  24. Audiffrin C, Cayol JL, Joulian C, Casalot L, Thomas P et al. Desulfonauticus submarinus gen. nov., sp. nov., a novel sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2003; 53:1585–1590 [View Article] [PubMed]
    [Google Scholar]
  25. Moussard H, L’Haridon S, Tindall BJ, Banta A, Schumann P et al. Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 2004; 54:227–233 [View Article] [PubMed]
    [Google Scholar]
  26. Kuever J, Rainey FA, Widdel F. Genus III. Desulfothermus gen. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), 2nd. edn Vol 2 New York: Springer; 2005 pp 955–956
    [Google Scholar]
  27. Nunoura T, Oida H, Miyazaki M, Suzuki Y, Takai K et al. Desulfothermus okinawensis sp. nov., a thermophilic and heterotrophic sulfate-reducing bacterium isolated from a deep-sea hydrothermal field. Int J Syst Evol Microbiol 2007; 57:2360–2364 [View Article] [PubMed]
    [Google Scholar]
  28. Alain K, Postec A, Grinsard E, Lesongeur F, Prieur D et al. Thermodesulfatator atlanticus sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 2010; 60:33–38 [View Article] [PubMed]
    [Google Scholar]
  29. Cha IT, Roh SW, Kim SJ, Hong HJ, Lee HW et al. Desulfotomaculum tongense sp. nov., a moderately thermophilic sulfate-reducing bacterium isolated from a hydrothermal vent sediment collected from the Tofua Arc in the Tonga Trench. Antonie Van Leeuwenhoek 2013; 104:1185–1192 [View Article] [PubMed]
    [Google Scholar]
  30. Lai Q, Cao J, Dupont S, Shao Z, Jebbar M et al. Thermodesulfatator autotrophicus sp. nov., a thermophilic sulfate-reducing bacterium from the Indian Ocean. Int J Syst Evol Microbiol 2016; 66:3978–3982 [View Article] [PubMed]
    [Google Scholar]
  31. Elsgaard L, Guezennec J, Benbouzid-Rollet N, Prieur D. Mesophilic sulfate-reducing bacteria from three deep-sea hydrothermal vent sites. Oceanol Acta 1995; 18:95–104
    [Google Scholar]
  32. Alazard D, Dukan S, Urios A, Verhé F, Bouabida N et al. Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 2003; 53:173–178 [View Article] [PubMed]
    [Google Scholar]
  33. Cao J, Gayet N, Zeng X, Shao Z, Jebbar M et al. Pseudodesulfovibrio indicus gen. nov., sp. nov., a piezophilic sulfate-reducing bacterium from the Indian Ocean and reclassification of four species of the genus Desulfovibrio. Int J Syst Evol Microbiol 2016; 66:3904–3911 [View Article] [PubMed]
    [Google Scholar]
  34. Kim YJ, Yang JA, Lim JK, Park MJ, Yang SH et al. Paradesulfovibrio onnuriensis gen. nov., sp. nov., a chemolithoautotrophic sulfate-reducing bacterium isolated from the Onnuri vent field of the Indian Ocean and reclassification of Desulfovibrio senegalensis as Paradesulfovibrio senegalensis comb. nov. J Microbiol 2020; 58:252–259 [View Article] [PubMed]
    [Google Scholar]
  35. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979; 43:260–296 [View Article] [PubMed]
    [Google Scholar]
  36. Nakagawa S, Takai K. 3 The Isolation of thermophiles from deep-sea hydrothermal environments. Methods Microbiol 2006; 35:55–91
    [Google Scholar]
  37. Sako Y, Takai K, Ishida Y, Uchida A, Katayama Y. Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 1996; 46:1099–1104 [View Article] [PubMed]
    [Google Scholar]
  38. Baross JA, Deming JW. Growth at high temperatures: isolation and taxonomy, physiology, and ecology. In Karl DM. eds The Microbiology of Deep-Sea Hydrothermal Vents Boca Raton: CRC Press; 1995 pp 169–217
    [Google Scholar]
  39. Porter KG, Feig YS. The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 1980; 25:943–948 [View Article]
    [Google Scholar]
  40. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  41. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  42. Lie TJ, Clawson ML, Godchaux W, Leadbetter ER. Sulfidogenesis from 2-aminoethanesulfonate (taurine) fermentation by a morphologically unusual sulfate-reducing bacterium, Desulforhopalus singaporensis sp. nov. Appl Environ Microbiol 1999; 65:3328–3334 [View Article] [PubMed]
    [Google Scholar]
  43. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  44. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  45. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  46. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  47. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004; 101:11030–11035 [View Article] [PubMed]
    [Google Scholar]
  48. Nei M, Kumar S. Molecular Evolution and Phylogenetics Oxford University Press; 2000
    [Google Scholar]
  49. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  50. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  51. Lee I, Chalita M, Ha SM, Na SI, Yoon SH et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  52. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  53. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 2018; 34:1037–1039 [View Article] [PubMed]
    [Google Scholar]
  54. Wu YW. ezTree: an automated pipeline for identifying phylogenetic marker genes and inferring evolutionary relationships among uncultivated prokaryotic draft genomes. BMC Genomics 2018; 19:921
    [Google Scholar]
  55. Lee I, Kim YO, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  56. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  57. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  58. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  59. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  60. Suzuki D, Ueki A, Amaishi A, Ueki K. Desulfobulbus japonicus sp. nov., a novel Gram-negative propionate-oxidizing, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int J Syst Evol Microbiol 2007; 57:849–855 [View Article] [PubMed]
    [Google Scholar]
  61. Sass A, Rütters H, Cypionka H, Sass H. Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono- and disaccharides. Arch Microbiol 2002; 177:468–474 [View Article] [PubMed]
    [Google Scholar]
  62. Collins MD, Widdel F. Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. Syst Appl Microbiol 1986; 8:8–18 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005083
Loading
/content/journal/ijsem/10.1099/ijsem.0.005083
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error