1887

Abstract

A novel bacterial strain, designated IPMB12, isolated from the gut of the superworm in Taiwan, was characterized using a polyphasic taxonomic approach. Cells were Gram-stain-negative, facultatively anaerobic, non-motile, coccoid or rod-shaped and formed translucent colonies. Optimal growth occurred at 25–37 °C, pH 9–10, and with 0–2 % NaCl. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that strain IPMB12 is affiliated with genus in the the family in the class . Strain IPMB12 was most closely related to LMG 29880 with a 94.6 % 16S rRNA gene sequence similarity. Strain IPMB12 showed less than 71.6 % average nucleotide identity, less than 71.5 % average amino acid identity and less than 21.2 % digital DNA–DNA hybridization identity compared to the strains of related genera within the family . The major fatty acids of strain IPMB12 were summed feature 8 (C18 : 17 and/or C18 : 16), C and C. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one uncharacterized phosphoaminoglycolipid and one uncharacterized aminophospholipid. The major isoprenoid quinone was Q-8. Genomic DNA G+C content of strain IPMB12 was 39.3 mol%. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain IPMB12 represents a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain is IPMB12 (=BCRC 80908 =LMG 32079=KCTC 82347=KACC 22323).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005081
2021-11-08
2024-05-02
Loading full text...

Full text loading...

References

  1. Kwong WK, Moran NA. Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order “Enterobacteriales” of the Gammaproteobacteria. Int J Syst Evol Microbiol 2013; 63:2008–2018 [View Article] [PubMed]
    [Google Scholar]
  2. Volkmann M, Skiebe E, Kerrinnes T, Faber F, Lepka D et al. Orbus hercynius gen. nov., sp. nov., isolated from faeces of wild boar, is most closely related to members of the orders “Enterobacteriales” and Pasteurellales. Int J Syst Evol Microbiol 2010; 60:2601–2605 [View Article] [PubMed]
    [Google Scholar]
  3. Kim JY, Lee J, Shin N-R, Yun J-H, Whon TW et al. Orbus Sasakiae sp. Nov., a bacterium isolated from the gut of the butterfly sasakia Charonda, and emended description of the genus Orbus. Int J Syst Evol Microbiol 2013; 63:1766–1770 [View Article] [PubMed]
    [Google Scholar]
  4. Praet J, Cnockaert M, Meeus I, Smagghe G. Gilliamella intestini sp. nov., Gilliamella bombicola sp. nov., Gilliamella bombi sp. nov. and Gilliamella mensalis sp. nov.: four novel Gilliamella species isolated from the bumblebee gut. Syst Appl Microbiol 2017; 40:199 [View Article] [PubMed]
    [Google Scholar]
  5. Ludvigsen J, Porcellato D, Amdam GV, Rudi K. Addressing the diversity of the honeybee gut symbiont Gilliamella: Description of Gilliamella Apis sp. Nov., isolated from the gut of honeybees (Apis mellifera). Int J Syst Evol Microbiol 2018; 68:1762–1770 [View Article] [PubMed]
    [Google Scholar]
  6. Engel P, Kwong WK, Moran NA. Frischella perrara gen. Nov., sp. Nov., a gammaproteobacterium isolated from the gut of the honeybee, Apis mellifera. Int J Syst Evol Microbiol 2013; 63:3646–3651 [View Article] [PubMed]
    [Google Scholar]
  7. Wolter LA, Suenami S, Miyazaki R. Frischella japonica sp. Nov., an anaerobic member of the orbales in the gammaproteobacteria, isolated from the gut of the eastern honey bee, apis Cerana japonica Fabricius. Int J Syst Evol Microbiol 2021; 71:
    [Google Scholar]
  8. Lo W-S, Chen LL, Chung WC, Gasparich GE, Kuo CH. Comparative genome Analysis of spiroplasma melliferum IPMB4, a honeybee-associated bacterium. BMC Genomics 2013; 14:22
    [Google Scholar]
  9. Moulder RW, French FE, Chang CJ. Simplified media for spiroplasmas associated with tabanid flies. Can J Microbiol 2002; 48:1–6 [View Article] [PubMed]
    [Google Scholar]
  10. Galkiewicz JP, Kellogg CA. Cross-kingdom amplification using bacteria-specific primers: Complications for studies of coral microbial ecology. Appl Environ Microbiol 2008; 74:7828–7831 [View Article] [PubMed]
    [Google Scholar]
  11. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  12. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  13. Hall TA. Bioedit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  14. Saitou N, Nei M. The Neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  16. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Systematic Zoology 1969; 18:1 [View Article]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. Mega7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  18. Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article] [PubMed]
    [Google Scholar]
  19. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  20. Lee I, Ouk Kim Y, Park SC, Chun J. Orthoani: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  21. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  22. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  23. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. Dna-dna hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  24. Luo C, Rodriguez-R LM, Konstantinidis KT. Mytaxa: An advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article] [PubMed]
    [Google Scholar]
  25. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  26. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article] [PubMed]
    [Google Scholar]
  27. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. Eggnog4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016; 44:D286–D293
    [Google Scholar]
  28. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: Rapid annotations using Subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  29. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article]
    [Google Scholar]
  30. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C et al. EDGAR 2.0: An enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016; 44:W22–8 [View Article]
    [Google Scholar]
  31. Beveridge TJ, Lawrence JR, Murray RGE et al. Sampling and staining for light microscopy. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. eds Methods for General and Molecular Bacteriology, 3rd ed. edn Washington, DC: American Society for Microbiology; 2007 pp 19–33
    [Google Scholar]
  32. Schlegel HG, Lafferty R, Krauss I. The isolation of mutants not accumulating poly-beta-hydroxybutyric acid. Arch Mikrobiol 1970; 71:283–294 [View Article] [PubMed]
    [Google Scholar]
  33. Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbüchel A. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 1999; 171:73–80 [View Article] [PubMed]
    [Google Scholar]
  34. Breznak JA, Costilow RN. Physicochemical factors in growth. Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. eds In Methods for general and molecular bacteriology, 3rd ed. edn Washington, DC: American Society for Microbiology; 2007 pp 309–329
    [Google Scholar]
  35. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematic. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. eds Methods for General and Molecular Bacteriology, 3rd Ed Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  36. Wen C-M, Tseng C-S, Cheng C-Y, Li Y-K. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002; 35:213–219 [View Article] [PubMed]
    [Google Scholar]
  37. Bowman JP. Description of cellulophaga algicola sp. Nov., isolated from the surfaces of antarctic algae, and reclassification of cytophaga uliginosa (Zobell and Upham 1944) Reichenbach 1989 as cellulophaga uliginosa comb. Nov. Int J Syst Evol Microbiol 2000; 50 Pt 5:1861–1868 [View Article] [PubMed]
    [Google Scholar]
  38. Chang S-C, Wang J-T, Vandamme P, Hwang J-H, Chang P-S et al. Chitinimonas taiwanensis gen. Nov., sp. Nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol 2004; 27:43–49 [View Article]
    [Google Scholar]
  39. Nokhal TH, Schlegel HG. Taxonomic study of paracoccus denitrificans. Int J Syst Bacteriol 1983; 33:26–37 [View Article]
    [Google Scholar]
  40. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  41. Embley TM, Wait R. Structural lipids of eubacteria. Goodfellow M, O’Donnell AG. eds In Chemical methods in prokaryotic systematics Chichester: Wiley; 1994 pp 121–161
    [Google Scholar]
  42. Collins MD. Isoprenoid quinones. Goodfellow M, O’Donnell AG. eds In Chemical methods in prokaryotic systematics Chichester: Wiley; 1994 pp 265–309
    [Google Scholar]
  43. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 1998; 19:554–568 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005081
Loading
/content/journal/ijsem/10.1099/ijsem.0.005081
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error