1887

Abstract

Three bacterial strains, named h-66, h-124 and h-125, were isolated from the haemolymph of different specimens of the flat oyster collected in Concarneau bay (Finistère, France). These strains were characterized by a polyphasic approach, including (i) whole genome analyses with 16S rRNA gene sequence alignment and pangenome analysis, determination of the G+C content, average nucleotide identity (ANI), and DNA–DNA hybridization (DDH), and (ii) fatty acid methyl ester and other phenotypic analyses. Strains h-66, h-124 and h-125 were closely related to both type strains RA15 and PAMC 28425 with less than 93.3% ANI and 52.3% DDH values. Regarding their phenotypic traits, the three strains were Gram-negative, 1–2 µm rod-shaped, aerobic, motile and non-spore-forming bacteria. Cells grew optimally at 25 °C in 2.5% NaCl and at 7–8 pH. The most abundant fatty acids were summed feature 3 (C 7/C 6), C and C 8. The strains carried a genome average size of 4.64 Mb and a G+C content of 40.28 mol%. The genetic and phenotypic results suggested that strains h-66, h-124 and h-125 belong to a new species of the genus . In this context, we propose the name sp. nov. The type strain is h-66 (=CECT 30303=CIP 111911).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005070
2021-11-05
2024-05-10
Loading full text...

Full text loading...

References

  1. Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rrna sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Evol Microbiol 1995; 45:755
    [Google Scholar]
  2. Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J. eds Bergey’s Manual of Systematics of Archaea and Bacteria, 1st edn. Wiley; 2015
    [Google Scholar]
  3. Lau SCK, Tsoi MMY, Li X, Dobretsov S, Plakhotnikova Y et al. Pseudoalteromonas spongiae sp. nov., a novel member of the gamma-Proteobacteria isolated from the sponge Mycale adhaerens in Hong Kong waters. Int J Syst Evol Microbiol 2005; 55:1593–1596 [View Article] [PubMed]
    [Google Scholar]
  4. Park S, Lee SY, Kim W, Yoon J-H. Pseudoalteromonas caenipelagi sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2020; 70:6301–6306 [View Article] [PubMed]
    [Google Scholar]
  5. Al Khudary R, Stösser NI, Qoura F, Antranikian G. Pseudoalteromonas arctica sp. nov., an aerobic, psychrotolerant, marine bacterium isolated from Spitzbergen. Int J Syst Evol Microbiol 2008; 58:2018–2024 [View Article] [PubMed]
    [Google Scholar]
  6. Zhang D-C, Liu Y-X, Huang H-J, Wu J. Pseudoalteromonas profundi sp. nov., isolated from a deep-sea seamount. Int J Syst Evol Microbiol 2016; 66:4416–4421 [View Article] [PubMed]
    [Google Scholar]
  7. Yan Y, Liu S, Wang D, Xue J, Guo D et al. Complete genome sequence of Bacillus amyloliquefaciens b15 isolated from grape skin, a strain of strong inhibitory activity against fungi. J Biotechnol 2016; 228:28–29 [View Article] [PubMed]
    [Google Scholar]
  8. Beurmann S, Ushijima B, Svoboda CM, Videau P, Smith AM et al. Pseudoalteromonas piratica sp. nov., a budding, prosthecate bacterium from diseased Montipora capitata, and emended description of the genus Pseudoalteromonas. Int J Syst Evol Microbiol 2017; 67:2683–2688 [View Article] [PubMed]
    [Google Scholar]
  9. Bozal N, Tudela E, Rossello-Mora R, Lalucat J, Guinea J. Pseudoalteromonas antarctica sp. nov., isolated from an Antarctic coastal environment. Int J Syst Bacteriol 1997; 47:345–351 [View Article]
    [Google Scholar]
  10. Egan S, Holmström C, Kjelleberg S. Pseudoalteromonas ulvae sp. nov., a bacterium with antifouling activities isolated from the surface of a marine alga. Int J Syst Evol Microbiol 2001; 51:1499–1504 [View Article] [PubMed]
    [Google Scholar]
  11. Ivanova EP, Sawabe T, Lysenko AM, Gorshkova NM, Hayashi K et al. Pseudoalteromonas translucida sp. nov. and Pseudoalteromonas paragorgicola sp. nov., and emended description of the genus. Int J Syst Evol Microbiol 2002; 52:1759–1766 [View Article] [PubMed]
    [Google Scholar]
  12. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  13. Andrews S. FastQC a quality control tool for high throughput sequence data: Babraham Bioinformatics; 2010 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ accessed 25 February 2021
  14. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  15. Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 2018; 34:i142–i150 [View Article]
    [Google Scholar]
  16. Bushnell B. BBMap: A Fast, Accurate, Splice-Aware Aligner. Lawrence Berkeley National Lab Berkeley, CA (United States: LBNL; 2014
    [Google Scholar]
  17. Seemann T. BAsic Rapid Ribosomal RNA Predictor 2021 https://github.com/tseemann/barrnap
  18. Vallenet D, Engelen S, Mornico D, Cruveiller S, Fleury L et al. MicroScope: A platform for microbial genome annotation and comparative genomics. Database 2009; 2009:bap021 [View Article] [PubMed]
    [Google Scholar]
  19. Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S et al. MicroScope–an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 2013; 41:D636–47 [View Article] [PubMed]
    [Google Scholar]
  20. Vallenet D, Calteau A, Dubois M, Amours P, Bazin A et al. MicroScope: An integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis. Nucleic Acids Res 2019 [View Article]
    [Google Scholar]
  21. Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science 1997; 278:631–637 [View Article] [PubMed]
    [Google Scholar]
  22. Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  25. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  26. Pritchard L, Glover R, Humphris S, Elphinstone J, Toth I. Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Anal Methods 2015; 8:
    [Google Scholar]
  27. Navarro-Torre S, Carro L, Rodríguez-Llorente ID, Pajuelo E, Caviedes et al. Pseudoalteromonas rhizosphaerae sp. nov., a novel plant growth-promoting bacterium with potential use in phytoremediation. Int J Syst Evol Microbiol 2020; 70:3287–3294 [View Article] [PubMed]
    [Google Scholar]
  28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  29. Seemann T. PROKKA: Rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  30. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  31. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  32. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  33. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 2013; 30:1188–1195 [View Article] [PubMed]
    [Google Scholar]
  34. Hwang CY, Lee I, Hwang YJ, Yoon SJ, Lee WS et al. Pseudoalteromonas neustonica sp. nov., isolated from the sea surface microlayer of the Ross Sea (Antarctica), and emended description of the genus Pseudoalteromonas. Int J Syst Evol Microbiol 2016; 66:3377–3382 [View Article] [PubMed]
    [Google Scholar]
  35. Halebian S, Harris B, Finegold SM, Rolfe RD. Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. J Clin Microbiol 1981; 13:444–448 [View Article] [PubMed]
    [Google Scholar]
  36. McClung LS. Suggestions on bacteriological techniques for the beginner. Am Biol Teach 1960; 22:343–351 [View Article]
    [Google Scholar]
  37. Farmer JJ, Hickman-Brenner FW. The genera Vibrio and Photobacterium. Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. eds In The Prokaryotes New York, NY: Springer New York; 2006 pp 508–563 [View Article]
    [Google Scholar]
  38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI; 1990
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005070
Loading
/content/journal/ijsem/10.1099/ijsem.0.005070
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error