1887

Abstract

Strain MD1 is an anaerobic, Gram-stain-negative bacterium isolated from a lab-scale biogas fermenter fed with maize silage. It has a rod-shaped morphology with peritrichously arranged appendages and forms long chains of cells and coccoid structures. The colonies of MD1 were white, circular, slightly convex and had a smooth rim. The isolate is mesophilic, displaying growth between 25 and 45 °C with an optimum at 40 °C. It grew at pH values of pH 6.7–8.2 (optimum, pH 7.1) and tolerated the addition of up to 1.5% (w/v) NaCl to the medium. The main cellular fatty acids of MD1 are C DMA and C. Strain MD1 fermented xylose, arabinose, glucose, galactose, cellobiose, maltose, maltodextrin10, lactose starch, and xylan, producing mainly 2-propanol and acetic acid. The genome of the organism has a total length of 4163427 bp with a G+C content of 38.5 mol%. The two closest relatives to MD1 are P3M-3 and FH052 with 96.44 or 95.8 % 16S rRNA gene sequence similarity and POCP values of 46.58 and 50.58%, respectively. As MD1 showed saccharolytic and xylanolytic properties, it may play an important role in the biogas fermentation process. Closely related variants of MD1 were also abundant in microbial communities involved in methanogenic fermentation. Based on morphological, phylogenetic and genomic data, the isolated strain can be considered as representing a novel genus in the family , for which the name gen. nov., sp. nov. (type strain MD1=DSM 110715=JCM 39125) is proposed.

Funding
This study was supported by the:
  • austrian federal ministry of economy, family and youth (Award 031A538A)
    • Principle Award Recipient: IrenaMaus
  • bundesministerium für bildung und forschung (Award 031A537D)
    • Principle Award Recipient: IrenaMaus
  • bundesministerium für bildung und forschung (Award 031A537C)
    • Principle Award Recipient: IrenaMaus
  • bundesministerium für bildung und forschung (Award 031A537B)
    • Principle Award Recipient: IrenaMaus
  • bundesministerium für bildung und forschung (Award 031A537A)
    • Principle Award Recipient: IrenaMaus
  • bundesministerium für bildung und forschung (Award 031A535A)
    • Principle Award Recipient: IrenaMaus
  • bundesministerium für bildung und forschung (Award 031A534A)
    • Principle Award Recipient: IrenaMaus
  • bundesministerium für bildung und forschung (Award 031A533B)
    • Principle Award Recipient: IrenaMaus
  • bundesministerium für bildung und forschung (Award 031A533A)
    • Principle Award Recipient: IrenaMaus
  • bundesministerium für bildung und forschung (Award 031A532B)
    • Principle Award Recipient: IrenaMaus
  • bundesanstalt für landwirtschaft und ernährung (Award 22021715)
    • Principle Award Recipient: WolfgangLiebl
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005044
2021-11-03
2024-05-02
Loading full text...

Full text loading...

References

  1. Appels L, Lauwers J, Degrève J, Helsen L, Lievens B et al. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew Sustain Ener Rev 2011; 15:4295–4301 [View Article]
    [Google Scholar]
  2. Tsavkelova EA, Netrusov AI. Biogas production from cellulose-containing substrates: A review. Appl Biochem Microbiol 2012; 48:421–433 [View Article]
    [Google Scholar]
  3. Sun L, Pope PB, Eijsink VGH, Schnürer A. Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microb Biotechnol 2015; 8:815–827 [View Article] [PubMed]
    [Google Scholar]
  4. Meehan CJ, Beiko RG. A phylogenomic view of ecological specialization in the lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol 2014; 6:703–713 [View Article] [PubMed]
    [Google Scholar]
  5. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2010; 38:D5–16 [View Article] [PubMed]
    [Google Scholar]
  6. Koeck DE, Ludwig W, Wanner G, Zverlov VV, Liebl W et al. Herbinix hemicellulosilytica gen. nov., sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Int J Syst Evol Microbiol 2015; 65:2365–2371 [View Article] [PubMed]
    [Google Scholar]
  7. Koeck DE, Hahnke S, Zverlov VV. Herbinix luporum sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Int J Syst Evol Microbiol 2016; 66:4132–4137 [View Article] [PubMed]
    [Google Scholar]
  8. Mohamed R, Chaudhry AS. Methods to study degradation of ruminant feeds. Nutr Res Rev 2008; 21:68–81 [View Article] [PubMed]
    [Google Scholar]
  9. Koeck DE, Mechelke M, Zverlov VV, Liebl W, Schwarz WH. Herbivorax saccincola gen. nov., sp. nov., a cellulolytic, anaerobic, thermophilic bacterium isolated via in sacco enrichments from a lab-scale biogas reactor. Int J Syst Evol Microbiol 2016; 66:4458–4463 [View Article] [PubMed]
    [Google Scholar]
  10. Rettenmaier R, Gerbaulet M, Liebl W, Zverlov VV. Hungateiclostridium mesophilum sp. nov., a mesophilic, cellulolytic and spore-forming bacterium isolated from a biogas fermenter fed with maize silage. Int J Syst Evol Microbiol 20191–7 [View Article]
    [Google Scholar]
  11. Johnson EA, Madia A, Demain AL. Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum. Appl Environ Microbiol 1981; 41:1060–1062 [View Article] [PubMed]
    [Google Scholar]
  12. Rettenmaier R, Kowollik M-L, Klingl A, Liebl W, Zverlov V. Ruminiclostridium herbifermentans sp. nov., a mesophilic and moderately thermophilic cellulolytic and xylanolytic bacterium isolated from a lab-scale biogas fermenter fed with maize silage. Int J Syst Evol Microbiol 2021004692 [View Article]
    [Google Scholar]
  13. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  14. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article] [PubMed]
    [Google Scholar]
  15. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  16. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  17. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution 1981; 35:1229 [View Article]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  20. Camin JH, Sokal RR. A method for deducing branching sequences in phylogeny. Evolution 1965; 19:311 [View Article]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  22. Rettenmaier R, Neuhaus K, Liebl W, Zverlov VV. Draft genome sequence of Anaerosphaera sp. strain GS7-6-2, a coccal bacterium isolated from a biogas-related environment. Microbiol Resour Announc 2019; 8:e00205-19 [View Article] [PubMed]
    [Google Scholar]
  23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  24. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  25. Ueki A, Ohtaki Y, Kaku N, Ueki K. Descriptions of Anaerotaenia torta gen. nov., sp. nov. and Anaerocolumna cellulosilytica gen. nov., sp. nov. isolated from a methanogenic reactor of cattle waste and reclassification of Clostridium aminovalericum, Clostridium jejuense and Clostridium xylanovorans as Anaerocolumna species. Int J Syst Evol Microbiol 2016; 66:2936–2943 [View Article] [PubMed]
    [Google Scholar]
  26. Podosokorskaya OA, Bonch-Osmolovskaya EA, Beskorovaynyy A, Toshchakov S, Kolganova T et al. Mobilitalea sibirica gen. nov., sp. nov., a halotolerant polysaccharide-degrading bacterium. Int J Syst Evol Microbiol 2014; 64:2657–2661 [View Article] [PubMed]
    [Google Scholar]
  27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  28. Teeling H, Waldmann J, Lombardot T, Bauer M, Glöckner FO. TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences. BMC Bioinformatics 2004; 5:163 [View Article] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  30. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  32. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  33. Wirth JS, Whitman WB. Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera. Int J Syst Evol Microbiol 2018; 68:2393–2411 [View Article] [PubMed]
    [Google Scholar]
  34. Aliyu H, Lebre P, Blom J, Cowan D, De Maayer P. Phylogenomic re-assessment of the thermophilic genus Geobacillus. Syst Appl Microbiol 2016; 39:527–533 [View Article] [PubMed]
    [Google Scholar]
  35. Thieme N, Rettenmaier R, Liebl W, Zverlov VV. Draft genome sequence of Mobilitalea sibirica strain P3M-3T, the sole representative of the genus Mobilitalea. Microbiol Resour Announc 2021; 10:e00129-21 [View Article] [PubMed]
    [Google Scholar]
  36. Mechichi T, Labat M, Garcia J-L, Thomas P, Patel BKC. Characterization of a new xylanolytic bacterium, Clostridium xylanovorans sp. nov. Syst Appl Microbiol 1999; 22:366–371 [View Article] [PubMed]
    [Google Scholar]
  37. Hardman JK, Stadtman TC. Metabolism of ω-amino acids. J Bacteriol 1960; 79:549–552 [View Article]
    [Google Scholar]
  38. Jeong H, Yi H, Sekiguchi Y, Muramatsu M, Kamagata Y et al. Clostridium jejuense sp. nov., isolated from soil. Int J Syst Evol Microbiol 2004; 54:1465–1468 [View Article] [PubMed]
    [Google Scholar]
  39. Na S-I, Kim YO, Yoon S-H, Ha S, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  40. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (Cazy) in 2013. Nucleic Acids Res 2014; 42:D490–5 [View Article] [PubMed]
    [Google Scholar]
  41. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. Dbcan2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article] [PubMed]
    [Google Scholar]
  42. Henrissat B, Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 1997; 7:637–644 [View Article] [PubMed]
    [Google Scholar]
  43. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010; 38:D355–60 [View Article] [PubMed]
    [Google Scholar]
  44. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences Tools for Functional Characterization of Genome and Metagenome Sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  45. Huang L, Krüger J, Sczyrba A. Analyzing large scale genomic data on the cloud with Sparkhit. Bioinformatics 2018; 34:1457–1465 [View Article] [PubMed]
    [Google Scholar]
  46. Maus I, Tubbesing T, Wibberg D, Heyer R, Hassa J et al. The role of Petrimonas mucosa ING2-E5AT in mesophilic biogas reactor systems as deduced from multiomics analys. Microorganisms 2020; 8:1–23 [View Article] [PubMed]
    [Google Scholar]
  47. Niu B, Zhu Z, Fu L, Wu S, Li W. FR-HIT, a very fast program to recruit metagenomic reads to homologous reference genomes. Bioinformatics 2011; 27:1704–1705 [View Article] [PubMed]
    [Google Scholar]
  48. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R et al. Circos: An information aesthetic for comparative genomics. Genome Res 19:1639–1645 [View Article] [PubMed]
    [Google Scholar]
  49. Hao L, McIlroy SJ, Kirkegaard RH, Karst SM, Fernando WEY et al. Novel prosthecate bacteria from the candidate phylum Acetothermia. ISME J 2018; 12:2225–2237 [View Article] [PubMed]
    [Google Scholar]
  50. Klingl A, Moissl-Eichinger C, Wanner G, Zweck J, Huber H et al. Analysis of the surface proteins of Acidithiobacillus ferrooxidans strain SP5/1 and the new, pyrite-oxidizing Acidithiobacillus isolate HV2/2, and their possible involvement in pyrite oxidation. Arch Microbiol 2011; 193:867–882 [View Article] [PubMed]
    [Google Scholar]
  51. Schuster JA, Klingl A, Vogel RF, Ehrmann MA. Polyphasic characterization of two novel Lactobacillus spp. isolated from blown salami packages: Description of Lactobacillus halodurans sp. Syst Appl Microbiol 2019; 42:126023 [View Article] [PubMed]
    [Google Scholar]
  52. Smith M, Pierson MD. Effect of reducing agents on oxidation-reduction potential and the outgrowth of Clostridium botulinum type E spores. Appl Environ Microbiol 1979; 37:978–984 [View Article] [PubMed]
    [Google Scholar]
  53. Baudrexl M, Schwarz WH, Zverlov VV, Liebl W. Biochemical characterisation of four rhamnosidases from thermophilic bacteria of the genera Thermotoga, Caldicellulosiruptor and Thermoclostridium. Sci Rep 2019; 9:15924 [View Article] [PubMed]
    [Google Scholar]
  54. Thieme N, Panitz JC, Held C, Lewandowski B, Schwarz WH et al. Milling byproducts are an economically viable substrate for butanol production using clostridial ABE fermentation. Appl Microbiol Biotechnol 2020; 104:8679–8689 [View Article] [PubMed]
    [Google Scholar]
  55. Schumann J, Leichtle A, Thiery J, Fuhrmann H. Fatty acid and peptide profiles in plasma membrane and membrane rafts of PUFA supplemented RAW264.7 macrophages. PLoS One 2011; 6:e24066 [View Article] [PubMed]
    [Google Scholar]
  56. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005044
Loading
/content/journal/ijsem/10.1099/ijsem.0.005044
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error