1887

Abstract

An aerobic, Gram-stain-positive, non-motile, dull-yellow, short rod-shaped actinomycete strain, designated G10, was isolated from (marigold) roots collected from Goyang in the Republic of Korea. The isolate showed best growth on Reasoner's 2A agar at 25 °C, pH 6.5.0 and with 0% NaCl (w/v). The strain was negative for oxidase activity and positive for catalase activity. On the basis of 16S RNA gene sequence similarity, strain G10 was affiliated to the genus and the closest species were HLT3-15 (98.8 %), HLT2-9 (98.8 %), JC2055 (98.7 %), YIM A1136 (98.6 %), Y4 (98.5 %), DSM 16090 (98.3 %), Cr7-14 (98.2 %), DSM 22017 (98.1 %) and KCTC 19197 (98.1 %). Strain G10 formed a monophyletic cluster with HLT3-15, HLT2-9 and KCTC 19197 in all phylogenetic trees. The cell-wall peptidoglycan of strain G10 contained -diaminopimelic acid as the diagnostic amino acid. The predominant fatty acids were iso-C and C 8. MK-8(H) was the major isoprenoid quinone. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol. Average nucleotide identity and digital DNA–DNA hybridization values were 78.6–88.7 % and 21.5–36.2 %, respectively, with the type strains of related species of the genus , suggesting that strain G10 represents a novel species. The genome of strain G10 is 4 231 000 bp long with a DNA G+C content of 71.5 mol% and encodes 4071 predicted proteins, six rRNAs and 46 tRNAs. The genome of strain G10 comprises the biosynthetic gene cluster for T3PKS, terpene, NRPS-like fragment and RRE-containing element as secondary metabolites. The results of taxonomic, phylogenetic, biochemical, chemotaxonomic and genomic analysis clearly supported that strain G10 represent a novel species within the genus , for which the name sp. nov is proposed and the type strain is G10 (=KCTC 49626=NBRC 114801).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005012
2021-09-20
2024-05-14
Loading full text...

Full text loading...

References

  1. Prauser H. Nocardioides, a new genus of the order Actinomycetales. Int J Syst Bacteriol 1976; 26:58–65 [View Article]
    [Google Scholar]
  2. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479–491
    [Google Scholar]
  3. Singh H, Du J, Trinh H, Won K, Yang JE et al. Nocardioides albidus sp. nov., an actinobacterium isolated from garden soil. Int J Syst Evol Microbiol 2016; 66:371–378 [View Article] [PubMed]
    [Google Scholar]
  4. Deng S, Chang X, Zhang Y, Ren L, Jiang F et al. Nocardioides antarcticus sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2015; 65:2615–2621 [View Article] [PubMed]
    [Google Scholar]
  5. Amin A, Ahmed I, Habib N, Abbas S, Xiao M et al. Nocardioides pakistanensis sp. nov., isolated from a hot water spring of Tatta Pani in Pakistan. Antonie <span data-cid="1629093278" id="f8d3bb46-39cd-4a58-a484-174901c24b5e" title="lowercase Added by Lavanya (PREEDITOR) - 08/16/2021 11 109:1101–1109 [View Article] [PubMed]
    [Google Scholar]
  6. Glaeser SP, McInroy JA, Busse HJ, Kämpfer P. Nocardioides zeae sp. nov., isolated from the stem of Zea mays. Int J Syst Evol Microbiol 2014; 64:2491–2496 [View Article] [PubMed]
    [Google Scholar]
  7. Lawson PA, Collins MD, Schumann P, Tindall BJ, Hirsch P et al. New LL-diaminopimelic acid-containing actinomycetes from hypersaline, heliothermal and meromictic Antarctic Ekho Lake: Nocardioides aquaticus sp. nov. and Friedmanniella lacustris sp. nov. Syst Appl Microbiol 2000; 23:219–229 [View Article] [PubMed]
    [Google Scholar]
  8. Lee SD. Nocardioides furvisabuli sp. nov., isolated from black sand. Int J Syst Evol Microbiol 2007; 57:35–39 [View Article] [PubMed]
    [Google Scholar]
  9. Huang MJ, Huang HQ, Salam N, Xiao M, Duan YQ et al. Nocardioides intraradicalis sp. nov. isolated from the roots of Psammosilene tunicoides W. C. Wu et C. Y. Wu. Int J Syst Evol Microbiol 2016; 66:3841–3847 [View Article] [PubMed]
    [Google Scholar]
  10. Lin SY, Wen CZ, Hameed A, Liu YC, Hsu YH et al. Nocardioides echinoideorum sp. nov., isolated from sea urchins (Tripneustes gratilla. Int J Syst Evol Microbiol 2015; 65:1953–1958 [View Article] [PubMed]
    [Google Scholar]
  11. Lee SD, Lee DW. Nocardioides rubroscoriae sp. nov., isolated from volcanic ash. Antonie van Leeuwenhoek 2014; 105:1017–1023 [View Article] [PubMed]
    [Google Scholar]
  12. Liu Q, Liu HC, Zhang JL, Zhou YG, Xin YH. Nocardioides glacieisoli sp. nov., isolated from a glacier. Int J Syst Evol Microbiol 2015; 65:4845–4849 [View Article] [PubMed]
    [Google Scholar]
  13. Urzì C, Salamone P, Schumann P, Stackebrandt E. Marmoricola aurantiacus gen. nov., sp. nov., a coccoid member of the family Nocardioidaceae isolated from a marble statue. Int J Syst Evol Microbiol 2000; 50:529–536 [View Article] [PubMed]
    [Google Scholar]
  14. Yoon JH, Kang SJ, Lee MH, Oh TK. Nocardioides hankookensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2008; 58:434–437 [View Article] [PubMed]
    [Google Scholar]
  15. Gesheva V, Vasileva-Tonkova E. Production of enzymes and antimicrobial compounds by halophilic Antarctic Nocardioides sp. grown on different carbon sources. World J Microbiol Biotechnol 2012; 28:2069–2076 [View Article] [PubMed]
    [Google Scholar]
  16. Riaz M, Ahmad R, Ur Rahman N, Khan Z, Dou D et al. Traditional uses, phyto-chemistry and pharmacological activities of Tagetes patula L. J Ethnopharmacol 2020255–112718
    [Google Scholar]
  17. Ambu G, Chaudhary RP, Mariotti M, Cornara L. Traditional uses of medicinal plants by ethnic people in the Kavrepalanchok district. Central Nepal Plants 2020; 9:759
    [Google Scholar]
  18. Chhetri G, Kim J, Kim I, Kang M, Lee B et al. Flavobacterium baculatum sp. nov., a carotenoid and flexirubin-type pigment producing species isolated from flooded paddy field. Int J Syst Evol Microbiol 2021; 71:004736
    [Google Scholar]
  19. Thompson J, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Tamura K. Mega7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  25. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  26. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  27. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  29. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  30. Blin K. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  31. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  32. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016; 44:D286–D293 [View Article]
    [Google Scholar]
  33. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  34. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  35. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article] [PubMed]
    [Google Scholar]
  36. Pinski A, Zur J, Hasterok R, Hupert-Kocurek K. Comparative genomics of Stenotrophomonas maltophilia and Stenotrophomonas rhizophila revealed characteristic features of both species. Int J Mol Sci 2020; 21:4299 [View Article]
    [Google Scholar]
  37. Bremer E, Krämer R. Responses of microorganisms to osmotic stress. Annu Rev Microbiol 2019; 73:313–334 [View Article] [PubMed]
    [Google Scholar]
  38. Kim J, Chhetri G, Kim I. Methylobacterium terrae sp. nov., a radiation-resistant bacterium isolated from gamma ray-irradiated soil. J Microbiol 2020; 57:959–966
    [Google Scholar]
  39. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the Taxonomy of Flavobacterium and Cytophaga-like Bacteria of the International Committee on Systematics of Prokaryotes. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070
    [Google Scholar]
  40. Buck JD. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  41. Smibert RM, Krieg NR. Phenotypic characterization. Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  42. Chhetri G, Kim J, Kim H. Pontibacter oryzae sp. nov., a carotenoid-producing species isolated from a rice paddy field. Antonie van Leeuwenhoek 2019; 112:1705 [View Article] [PubMed]
    [Google Scholar]
  43. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 1981; 45:316–354 [View Article] [PubMed]
    [Google Scholar]
  44. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 1981; 45:316–354 [View Article] [PubMed]
    [Google Scholar]
  45. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:205
    [Google Scholar]
  46. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241
    [Google Scholar]
  47. Kim I, Chhetri G, Kim J. Amnibacterium setariae sp. nov., an endophytic actinobacterium isolated from dried foxtail. Antonie van Leeuwenhoek 2019; 112:1731–1738 [View Article] [PubMed]
    [Google Scholar]
  48. Yi H, Chun J. Nocardioides ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2004; 54:1295–1299 [View Article] [PubMed]
    [Google Scholar]
  49. Han MX, Fang BZ, Tian Y, Zhang WQ, Jiao JY et al. Nocardioides cavernae sp. nov., a novel actinobacterium isolated from a karst cave. Int J Syst Evol Microbiol 2017; 67:633–639 [View Article] [PubMed]
    [Google Scholar]
  50. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005012
Loading
/content/journal/ijsem/10.1099/ijsem.0.005012
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error