1887

Abstract

This article introduces a new species cultivated from a human foot wound infection in a Dutch traveller returning from the island of Bali, Indonesia: sp. nov. Based on the genomic sequence, there is strong molecular evidence for assigning the strain to a novel species within the complex. Differences in cellular fatty acid spectrum and biochemical tests underline these findings. Its ecological niche and pathogenicity require further study. The type strain is DSM111914 (JCM34415).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004996
2021-09-28
2024-04-27
Loading full text...

Full text loading...

References

  1. Lowy FD. Staphylococcus aureus infections. N Engl J Med 1998; 339:520–532 [View Article] [PubMed]
    [Google Scholar]
  2. Haag AF, Fitzgerald JR, Penades JR. Staphylococcus aureus in animals. Microbiol Spectr 2019; 7: [View Article] [PubMed]
    [Google Scholar]
  3. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015; 28:603–661 [View Article] [PubMed]
    [Google Scholar]
  4. Tong SY, Schaumburg F, Ellington MJ, Corander J, Pichon B et al. Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: the non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov. Int J Syst Evol Microbiol 2015; 65:15–22 [View Article] [PubMed]
    [Google Scholar]
  5. Schuster D, Rickmeyer J, Gajdiss M, Thye T, Lorenzen S et al. Differentiation of Staphylococcus argenteus (formerly: Staphylococcus aureus clonal complex 75) by mass spectrometry from S. aureus using the first strain isolated from a wild African great ape. Int J Med Microbiol 2017; 307:57–63 [View Article] [PubMed]
    [Google Scholar]
  6. Ng JW, Holt DC, Lilliebridge RA, Stephens AJ, Huygens F et al. Phylogenetically distinct Staphylococcus aureus lineage prevalent among indigenous communities in northern Australia. J Clin Microbiol 2009; 47:2295–2300 [View Article] [PubMed]
    [Google Scholar]
  7. Zhang DF, Zhi XY, Zhang J, Paoli GC, Cui Y et al. Preliminary comparative genomics revealed pathogenic potential and international spread of Staphylococcus argenteus. BMC Genomics 2017; 18:808 [View Article] [PubMed]
    [Google Scholar]
  8. Becker K, Schaumburg F, Kearns A, Larsen AR, Lindsay JA et al. Implications of identifying the recently defined members of the Staphylococcus aureus complex S. argenteus and S. schweitzeri: a position paper of members of the ESCMID Study Group for Staphylococci and Staphylococcal Diseases (ESGS. Clin Microbiol Infect 2019; 25:1064–1070 [View Article] [PubMed]
    [Google Scholar]
  9. Giske CG, Dyrkell F, Arnellos D, Vestberg N, Hermansson Panna S et al. Transmission events and antimicrobial susceptibilities of methicillin-resistant Staphylococcus argenteus in Stockholm. Clin Microbiol Infect 2019; 25:1289e5- e8 [View Article] [PubMed]
    [Google Scholar]
  10. Eshaghi A, Bommersbach C, Zittermann S, Burnham CA, Patel R et al. Phenotypic and genomic profiling of Staphylococcus argenteus in Canada and the United States and recommendations for clinical result reporting. J Clin Microbiol 2021; 59: [View Article] [PubMed]
    [Google Scholar]
  11. Schaumburg F, Pauly M, Anoh E, Mossoun A, Wiersma L et al. Staphylococcus aureus complex from animals and humans in three remote African regions. Clin Microbiol Infect 2015; 21:345e1-8 [View Article] [PubMed]
    [Google Scholar]
  12. BD Instructions for use-read-to-use plated media, BD Macconkey agar without salt; 2013; 4
  13. Raff AB, Kroshinsky D. Cellulitis: A Review. JAMA 2016; 316:325–337 [View Article] [PubMed]
    [Google Scholar]
  14. Leppard BJ, Seal DV, Colman G, Hallas G. The value of bacteriology and serology in the diagnosis of cellulitis and erysipelas. Br J Dermatol 1985; 112:559–567 [View Article] [PubMed]
    [Google Scholar]
  15. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  16. Meier-Kolthoff JP, Goker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  17. Richter M, Rossello-Mora R, Oliver Glockner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  18. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 2016; 44:D733–45 [View Article] [PubMed]
    [Google Scholar]
  19. EUCAST European committee on antimicrobial susceptibility testing; Breakpoint tables for interpretation of mics and zone diameters. Version 10.0
    [Google Scholar]
  20. Lefort V, Desper R, Gascuel O. FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  21. Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 2017; 33:2946–2947 [View Article] [PubMed]
    [Google Scholar]
  22. Farris J. Estimating phylogenetic trees from distance matrices. Am Nat 1972645–667
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004996
Loading
/content/journal/ijsem/10.1099/ijsem.0.004996
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error