1887

Abstract

A strictly anaerobic, resistant starch-degrading, bile-tolerant, autolytic strain, IPLA60002, belonging to the family , was isolated from a human bile sample of a liver donor without hepatobiliary disease. Cells were Gram-stain-positive cocci, and 16S rRNA gene and whole genome analyses showed that was the phylogenetically closest related species to the novel strain IPLA60002, though with average nucleotide identity values below 90 %. Biochemically, the new isolate has metabolic features similar to those described previously for gut strains, including the ability to degrade a range of different starches. The new isolate, however, produces lactate and shows distinct resistance to the presence of bile salts. Additionally, the novel bile isolate displays an autolytic phenotype after growing in different media. Strain IPLA60002 is phylogenetically distinct from other species within the genus . Therefore, we propose on the basis of phylogenetic, genomic and metabolic data that the novel IPLA60002 strain isolated from human bile be given the name gen. nov., sp. nov., within the new proposed genus and the family . Strain IPLA60002 (=DSM 110008=LMG 31505) is proposed as the type strain of .

Funding
This study was supported by the:
  • Tenovus (GB)
    • Principle Award Recipient: ElenaConti
  • Rural and Environment Science and Analytical Services Division (GB) (Award SG-RESAS)
    • Principle Award Recipient: SylviaH. Duncan
  • Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología (Award IDI/2018/000236)
    • Principle Award Recipient: NotApplicable
  • Ministerio de Economía y Competitividad (Award Ramón y Cajal” program (RYC-2016-19726))
    • Principle Award Recipient: SusanaDelgado
  • Ministerio de Economía y Competitividad (Award FPI Predoctoral Grant BES-2014-068736)
    • Principle Award Recipient: NataliaMolinero
  • Ministerio de Economía y Competitividad (Award AGL2013-44761-P)
    • Principle Award Recipient: AbelardoMargolles
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004960
2021-08-16
2024-05-21
Loading full text...

Full text loading...

References

  1. La RA, Meier-Kolthoff JP, Suen G, La Reau AJ, Meier-Kolthoff JP et al. Sequence-based analysis of the genus Ruminococcus resolves its phylogeny and reveals strong host association. Microb Genomics 2016; 2:e000099
    [Google Scholar]
  2. Rainey FA, Janssen PH. Phylogenetic analysis by 16S ribosomal DNA sequence comparison reveals two unrelated groups of species within the genus Ruminococcus. FEMS Microbiol Lett 1995; 129:69–73 [View Article] [PubMed]
    [Google Scholar]
  3. Togo AH, Diop A, Bittar F, Maraninchi M, Valero R et al. Description of Mediterraneibacter massiliensis, gen. nov., sp. nov., a new genus isolated from the gut microbiota of an obese patient and reclassification of Ruminococcus faecis, Ruminococcus lactaris, Ruminococcus torques, Ruminococcus gnavus and Clostridium glycyrrhizinilyticum as Mediterraneibacter faecis comb. nov., Mediterraneibacter lactaris comb. nov., Mediterraneibacter torques comb. nov., Mediterraneibacter gnavus comb. nov. and Mediterraneibacter glycyrrhizinilyticus comb. nov. Antonie van Leeuwenhoek 2018; 111:2107–2128 [View Article] [PubMed]
    [Google Scholar]
  4. Liu C, Finegold SM, Song Y, Lawson PA. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2008; 58:1896–1902 [View Article] [PubMed]
    [Google Scholar]
  5. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2011; 5:220–230 [View Article] [PubMed]
    [Google Scholar]
  6. Moore WEC, Cato EP. Ruminococcus bromii sp. n. and emendation of the description of Ruminococcus Sijpestein. Int J Syst Bacteriol 1972; 22:78–80 [View Article]
    [Google Scholar]
  7. Herbeck JL, Bryant MP. Nutritional features of the intestinal anaerobe Ruminococcus bromii. Appl Microbiol 1974; 28:1018–1022 [View Article] [PubMed]
    [Google Scholar]
  8. Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 2012; 6:1535–1543 [View Article] [PubMed]
    [Google Scholar]
  9. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 2008; 6:121–131 [View Article] [PubMed]
    [Google Scholar]
  10. La RA, Suen G. The Ruminococci: key symbionts of the gut ecosystem. J Microbiol 2018; 56.3:199–208 [View Article]
    [Google Scholar]
  11. Rincon MT, Dassa B, Flint HJ, Travis AJ, Jindou S et al. Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD-1. PLoS One 2010; 5:e12476 [View Article] [PubMed]
    [Google Scholar]
  12. David YB, Dassa B, Borovok I, Lamed R, Koropatkin NM et al. Ruminococcal cellulosome systems from rumen to human. Environ Microbiol 2015; 17:3407–3426 [View Article] [PubMed]
    [Google Scholar]
  13. Ding SY, Rincon MT, Lamed R, Martin JC, McCrae SI et al. Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. J Bacteriol 2001; 183:1945–1953 [View Article] [PubMed]
    [Google Scholar]
  14. Moraïs S, Ben DY, Bensoussan L, Duncan SH, Koropatkin NM et al. Enzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin-dockerin recognition. Environ Microbiol 2016; 18:542–556 [View Article] [PubMed]
    [Google Scholar]
  15. Ze X, Ben DY, Laverde-Gomez JA, Dassa B, Sheridan PO et al. Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic firmicutes bacterium Ruminococcus bromii. mBio 2015; 15:e01058
    [Google Scholar]
  16. Mukhopadhya I, Moraïs S, Laverde-Gomez J, Sheridan PO, Walker AW et al. Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch-degrader Ruminococcus bromii. Environ Microbiol 2018; 20:324–336 [View Article] [PubMed]
    [Google Scholar]
  17. Molinero N, Ruiz L, Milani C, Gutiérrez-Díaz I, Sánchez B et al. The human gallbladder microbiome is related to the physiological state and the biliary metabolic profile. Microbiome 2019; 7:100 [View Article] [PubMed]
    [Google Scholar]
  18. Coico R. Gram Staining. Curr Protoc Microbiol 2005; 3:Appendix [View Article] [PubMed]
    [Google Scholar]
  19. Kubota H, Senda S, Nomura N, Tokuda H, Uchiyama H. Biofilm formation by lactic acid bacteria and resistance to environmental stress. J Biosci Bioeng 2008; 106:381–386 [View Article] [PubMed]
    [Google Scholar]
  20. Miyazaki K, Martin J, Marinsek-Logar R, Flint H. Degradation and utilization of xylans by the rumen anaerobe Prevotella bryantii (formerly P. ruminicola subsp. brevis) B14. Anaerobe 1997; 3:373–381 [View Article] [PubMed]
    [Google Scholar]
  21. Richardson AJ, Calder AG, Stewart CS, Smith A. Simultaneous determination of volatile and non-volatile acidic fermentation products of anaerobes by capillary gas chromatography. Lett Appl Microbiol 1989; 9:5–8 [View Article]
    [Google Scholar]
  22. Bengtsson-Palme J, Angelin M, Huss M, Kjellqvist S, Kristiansson E et al. The human gut microbiome as a transporter of antibiotic resistance genes between continents. Antimicrob Agents Chemother 2015; 59:6551–6560 [View Article] [PubMed]
    [Google Scholar]
  23. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  24. Flint HJ, Barcenilla A, Stewart CS, Duncan SH, Hold GL. Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol 2002; 52:1615–1620 [View Article] [PubMed]
    [Google Scholar]
  25. Palys T, Nakamura LK, Cohan FM. Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. Int J Syst Bacteriol 2019; 54:1145–1146
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  27. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. mega7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  29. Nei M, Kumar S. Molecular Evolution and Phylogenetics Oxford Univ. Press; 2000
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  31. Chevreux B, Wetter T, Suhai S. Genome sequence assembly using trace signals and additional sequence information. Comput Sci Biol Proc Ger Conf Bioinforma 1999; 99:45–46
    [Google Scholar]
  32. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  33. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  34. El-Gebali S. The Pfam protein families database in 2019. Nucleic Acids Res 2019; 47:D427–D432 [View Article] [PubMed]
    [Google Scholar]
  35. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010; 26:589–595 [View Article] [PubMed]
    [Google Scholar]
  36. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011; 27:2987–2993 [View Article] [PubMed]
    [Google Scholar]
  37. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012; 22:568–576 [View Article] [PubMed]
    [Google Scholar]
  38. Yin Y, Mao X, Yang J, Chen X, Mao F et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2012; 40:W445–51 [View Article] [PubMed]
    [Google Scholar]
  39. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014D490–D495
    [Google Scholar]
  40. Barcenilla A. Diversity of the Butyrate-producing Microflora of the Human Gut. PhD Thesis Aberdeen, UK: Robert Gordon University; 1999
    [Google Scholar]
  41. Klieve AV, O’Leary MN, McMillen L, Ouwerkerk D. Ruminococcus bromii, identification and isolation as a dominant community member in the rumen of cattle fed a barley diet. J Appl Microbiol 2007; 103:2065–2073 [View Article] [PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  43. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  44. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12 [View Article] [PubMed]
    [Google Scholar]
  45. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  46. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  47. Molinero N, Ruiz L, Sánchez B, Margolles A, Delgado S. Intestinal bacteria interplay with bile and cholesterol metabolism: implications on host physiology. Front Physiol 2019; 10:185 [View Article] [PubMed]
    [Google Scholar]
  48. Kermani AA, Macdonald CB, Gundepudi R, Stockbridge RB. Guanidinium export is the primal function of SMR family transporters. Proc Natl Acad Sci USA 2018; 115:3060–3065 [View Article] [PubMed]
    [Google Scholar]
  49. Kuroda T, Tsuchiya T. Multidrug efflux transporters in the MATE family. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2009; 1794:763–768 [View Article]
    [Google Scholar]
  50. Dawson PA, Lan T, Rao A. Bile acid transporters. J Lipid Research 2009; 50:
    [Google Scholar]
  51. Hidalgo-Cantabrana C, Sánchez B, Milani C, Ventura M, Margolles A et al. Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Appl Environ Microbiol 2014; 80:9–18 [View Article] [PubMed]
    [Google Scholar]
  52. Basak G, Lakshmi V, Chandran P, Das N. Removal of Zn(II) from electroplating effluent using yeast biofilm formed on gravels: Batch and column studies. J Environ Heal Sci Eng 2014; 12:
    [Google Scholar]
  53. Boke H, Aslim B, Alp G. The role of resistance to bile salts and acid tolerance of exopolysaccharides (EPSS) produced by yogurt starter bacteria. Arch biol sci (Beogr) 2010; 62:323–328 [View Article]
    [Google Scholar]
  54. Alp G, Aslim B. Relationship between the resistance to bile salts and low pH with exopolysaccharide (EPS) production of Bifidobacterium spp. isolated from infants feces and breast milk. Anaerobe 2010; 16:101–105 [View Article] [PubMed]
    [Google Scholar]
  55. Lichenstein HS, Hastings AE, Langley KE, Mendiaz EA, Rohde MF et al. Cloning and nucleotide sequence of the N-acetylmuramidase M1-encoding gene from Streptomyces globisporus. Gene 1990; 88:81–86 [View Article] [PubMed]
    [Google Scholar]
  56. Arndt D. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004960
Loading
/content/journal/ijsem/10.1099/ijsem.0.004960
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error