1887

Abstract

A hyperthermophilic, strictly anaerobic archaeon, designated strain SY113, was isolated from a deep-sea hydrothermal vent chimney on the Southwest Indian Ridge at a water depth of 2770 m. Enrichment and isolation of strain SY113 were performed at 85 °C at 0.1 MPa. Cells of strain SY113 were irregular motile cocci with peritrichous flagella and generally 0.8–2.4 µm in diameter. Growth was observed at temperatures between 50 and 90 °C (optimum at 85 °C) and under hydrostatic pressures of 0.1–60 MPa (optimum, 27 MPa). Cells of SY113 grew at pH 4.0–9.0 (optimum, pH 5.5) and a NaCl concentration of 0.5–5.5 % (w/v; optimum concentration, 3.0 % NaCl). Strain SY113 was an anaerobic chemoorganoheterotroph and grew on complex proteinaceous substrates such as yeast extract and tryptone, as well as on maltose and starch. Elemental sulphur stimulated growth, but not obligatory for its growth. The G+C content of the genomic DNA was 55.0 mol%. Phylogenetic analysis of the 16S rRNA sequence of strain SY113 showed that the novel isolate belonged to the genus . On the basis of physiological characteristics, average nucleotide identity values and DNA–DNA hybridization results, we propose a novel species, named sp. nov. The type strain is SY113 (=MCCC 1K04190=JCM 39083).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004934
2021-08-03
2024-05-01
Loading full text...

Full text loading...

References

  1. Allen EE, Facciotti D, Bartlett DH. Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 1999; 65:1710–1720 [View Article] [PubMed]
    [Google Scholar]
  2. Wang F, Xiao X, Ou H-Y, Gai Y, Wang F. Role and regulation of fatty acid biosynthesis in the response of Shewanella piezotolerans WP3 to different temperatures and pressures. J Bacteriol 2009; 191:2574–2584 [View Article] [PubMed]
    [Google Scholar]
  3. Tamegai H, Kato C, Horikoshi K. Pressure-regulated respiratory system in barotolerant bacterium, Shewanella sp. strain DSS 12. J Biochem Mol Biol Biophysics 1998; 1:213–220
    [Google Scholar]
  4. Tamegai H, Kawano H, Ishii A, Chikuma S, Nakasone K et al. Pressure-regulated biosynthesis of cytochrome bd in piezo- and psychrophilic deep-sea bacterium Shewanella violacea DSS12. Extremophiles 2005; 9:247–253 [View Article] [PubMed]
    [Google Scholar]
  5. Oger PM, Jebbar M. The many ways of coping with pressure. Res Microbiol 2010; 161:799–809 [View Article] [PubMed]
    [Google Scholar]
  6. Vezzi A, Campanaro S, D’Angelo M, Simonato F, Vitulo N et al. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 2005; 307:1459–1461 [View Article] [PubMed]
    [Google Scholar]
  7. Campanaro S, Vezzi A, Vitulo N, Lauro FM, D’Angelo M et al. Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genomics 2005; 6:122 [View Article] [PubMed]
    [Google Scholar]
  8. Wang F, Wang J, Jian H, Zhang B, Li S et al. Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS one 2008; 3:e1937 [View Article] [PubMed]
    [Google Scholar]
  9. Eloe EA, Lauro FM, Vogel RF, Bartlett DH. The deep-sea bacterium Photobacterium profundum SS9 utilizes separate flagellar systems for swimming and swarming under high-pressure conditions. Appl Environ Microbiol 2008; 74:6298–6305 [View Article] [PubMed]
    [Google Scholar]
  10. Martin DD, Bartlett DH, Roberts MF. Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles 2002; 6:507–514 [View Article] [PubMed]
    [Google Scholar]
  11. Schut G, Lipscomb G, Han Y, Notey J, Kelly R et al. The order thermococcales and the family Thermococcaceae. The Prokaryotes: Other Major Lineages of Bacteria and the Archaea 2014363–383
    [Google Scholar]
  12. Leigh JA, Albers SV, Atomi H, Allers T. Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 2011; 35:577–608 [View Article] [PubMed]
    [Google Scholar]
  13. Canganella F, Gambacorta A, Kato C, Horikoshi K. Effects of hydrostatic pressure and temperature on physiological traits of Thermococcus guaymasensis and Thermococcus aggregans growing on starch. Microbiol Res 2000; 154:297–306 [View Article] [PubMed]
    [Google Scholar]
  14. Canganella F, Gonzalez JM, Yanagibayashi M, Kato C, Horikoshi K. Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus. Arch Microbiol 1997; 168:1–7 [View Article] [PubMed]
    [Google Scholar]
  15. Marteinsson VT, Birrien JL, Reysenbach AL, Vernet M, Marie D et al. Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 1999; 49:351–359 [View Article] [PubMed]
    [Google Scholar]
  16. Canganella F, Jones WJ, Gambacorta A, Antranikian G. Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. Int J Syst Evol Micr 1998; 48:1181–1185
    [Google Scholar]
  17. Zhao W, Zeng X, Xiao X. Thermococcus eurythermalis sp. nov., a conditional piezophilic, hyperthermophilic archaeon with a wide temperature range for growth, isolated from an oil-immersed chimney in the Guaymas Basin. Int J Syst Evol Microbiol 2015; 65:30–35 [View Article] [PubMed]
    [Google Scholar]
  18. Godfroy A, Lesongeur F, Raguénès G, Quérellou J, Antoine E et al. Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Micr 1997; 47:622–626 [View Article]
    [Google Scholar]
  19. Grote R, Li L, Tamaoka J, Kato C, Horikoshi K et al. Thermococcus siculi sp. nov., a novel hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Okinawa Trough. Extremophiles 1999; 3:55–62 [View Article] [PubMed]
    [Google Scholar]
  20. Jolivet E, Corre E, L’Haridon S, Forterre P, Prieur D. Thermococcus marinus sp nov and Thermococcus radiotolerans sp nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 2004; 8:219–227 [View Article] [PubMed]
    [Google Scholar]
  21. Bae SS, Kim YJ, Yang SH, Lim JK, Jeon JH et al. Thermococcus onnurineus sp nov., a hyperthermophilic Archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J Microbiol Biotechn 2006; 16:1826–1831
    [Google Scholar]
  22. Lim JK, Kim YJ, Yang JA, Namirimu T, Yang SH et al. Thermococcus indicus sp. nov., a Fe(III)-reducing hyperthermophilic archaeon isolated from the Onnuri Vent Field of the Central Indian Ocean ridge. J Microbiol 2020; 58:260–267 [View Article]
    [Google Scholar]
  23. Zeng X, Birrien JL, Fouquet Y, Cherkashov G, Jebbar M et al. Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. Isme J 2009; 3:873–876 [View Article] [PubMed]
    [Google Scholar]
  24. Birrien J-L, Zeng X, Jebbar M, Cambon-Bonavita M-A, Quérellou J et al. Pyrococcus yayanosii sp. nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2011; 61:2827–2881 [View Article] [PubMed]
    [Google Scholar]
  25. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  26. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. mega7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  29. Auch AF, Klenk HP, Goker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article] [PubMed]
    [Google Scholar]
  30. Lee I, Ouk Kim Y, Park S-C, Chun J. Orthoani: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Micr 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  31. Kuwabara T, Minaba M, Ogi N, Kamekura M. Thermococcus celericrescens sp. nov., a fast-growing and cell-fusing hyperthermophilic archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Micr 2007; 57:437–443 [View Article]
    [Google Scholar]
  32. Duffaud GD, d’Hennezel OB, Peek AS, Reysenbach AL, Kelly RM. Isolation and characterization of Thermococcus barossii, sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent flange formation. Syst Appl Microbiol 1998; 21:40–49 [View Article] [PubMed]
    [Google Scholar]
  33. Zillig W, Holz I, Janekovic D, Schafer W, Reiter WD. The archaebacterium thermococcus-celer represents, a novel genus within the thermophilic branch of the Archaebacteria. Syst Appl Microbiol 1983; 4:88–94 [View Article] [PubMed]
    [Google Scholar]
  34. Kuwabara T, Minaba M, Iwayama Y, Inouye I, Nakashima M et al. Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount. Int J Syst Evol Micr 2005; 55:2507–2514 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004934
Loading
/content/journal/ijsem/10.1099/ijsem.0.004934
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error