1887

Abstract

Four marine bacterial strains were isolated from a thallus of the brown alga collected in Roscoff, France. Cells were Gram-stain-negative, strictly aerobic, non-flagellated, gliding, rod-shaped and grew optimally at 25–30 °C, at pH 7–8 and with 2–4 % NaCl. Phylogenetic analyses of their 16S rRNA gene sequences showed that the bacteria were affiliated to the genus (family , phylum ). The four strains exhibited 97.8–100 % 16S rRNA gene sequence similarity values among themselves, 97.9–99.1 % to the type strains of KMM 3526 and KMM 3676, and less than 99 % to other species of the genus . The DNA G+C content of the four strains ranged from 36.7 to 37.7 mol%. Average nucleotide identity and digital DNA–DNA hybridization calculations between the new strains and other members of the genus resulted in values of 76.4–88.9 % and below 38.5 %, respectively. Phenotypic, phylogenetic and genomic analyses showed that the four strains are distinct from species of the genus with validly published names. They represent two novel species of the genus , for which the names sp. nov. and sp. nov. are proposed with Asnod1-F08 (RCC6906=KMM 6823=CIP 111902) and Asnod2-B07-B (RCC6908=KMM 6825=CIP 111904), respectively, as the type strains.

Funding
This study was supported by the:
  • Agence Nationale de la Recherche (Award ANR-18-CE02-0001-01)
    • Principle Award Recipient: FrançoisThomas
  • Agence Nationale de la Recherche (Award ANR-10- BTBR-04)
    • Principle Award Recipient: NotApplicable
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004913
2021-08-04
2024-05-01
Loading full text...

Full text loading...

References

  1. Potin P, L'Haridon S, Corre E, Kloareg B, Potin P. Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int J Syst Evol Microbiol 2001; 51:985–997
    [Google Scholar]
  2. Nedashkovskaya OI, Cleenwerck I, Lysenko AM, Cleenwerck I, Lysenko AM et al. Zobellia amurskyensis sp. nov., Zobellia laminariae sp. nov. and Zobellia russellii sp. nov., novel marine bacteria of the family Flavobacteriaceae. Int J Syst Evol Microbiol 2004; 54:1643–1648 [View Article] [PubMed]
    [Google Scholar]
  3. Barbeyron T, Barbeyron T, Martin R, Portetelle D, Michel G et al. The cultivable surface microbiota of the brown alga Ascophyllum nodosum is enriched in macroalgal-polysaccharide-degrading bacteria. Front Microbiol 2015; 6:1–14
    [Google Scholar]
  4. Zobell C. Studies on marine bacteria I the cultural requirements of heterotrophic aerobes. J Mar Res 1941; 4:42–75
    [Google Scholar]
  5. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758 [View Article]
    [Google Scholar]
  6. Reichenbach H, Kleinig H, Achenbach H. The pigments of Flexibacter elegans: novel and chemosystematically useful compounds. Arch Microbiol 1974; 101:131–144 [View Article]
    [Google Scholar]
  7. Smibert R, Krieg N. General characterization. Gerhardt P, Murray R, Costilow R, Nester E, Wood W. eds In Manual of methods for general Bacteriology Washington, DC. USA: American Society for Microbiology; 1981 pp 409–443
    [Google Scholar]
  8. Draget KI, Ostgaard K, Smidsrød O. Alginate-based solid media for plant tissue culture. Appl Microbiol Biotechnol 1989; 31:79–83 [View Article]
    [Google Scholar]
  9. Thomas F, Barbeyron T, Michel G. Evaluation of reference genes for real-time quantitative PCR in the marine flavobacterium Zobellia galactanivorans. J Microbiol Methods 2011; 84:61–66 [View Article] [PubMed]
    [Google Scholar]
  10. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  11. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  12. Miller L. A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article]
    [Google Scholar]
  13. Kuykendall L, Roy M, O’Neill JJ, Devine T. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  14. Dyer WJ, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917
    [Google Scholar]
  15. Tindall B, Sikorski J, Smibert R, Kreig N. Phenotypic characterization and the principles of comparative systematics. Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T. eds In Methods for General and Molecular Microbiology Washington, DC. USA: ASM Press; 2007 pp 330–393
    [Google Scholar]
  16. Nurk S, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  17. Bosi E, Brunetti S, Sagot M-F, Brunetti S, Sagot M-F et al. Medusa: a multi-draft based scaffolder. Bioinformatics 2015; 31:2443–2451 [View Article] [PubMed]
    [Google Scholar]
  18. Liu B, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:1–6
    [Google Scholar]
  19. Tyson GW, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  20. Stahl DA, Amann RI, Stahl DA. Dual staining of natural bacterioplankton with 4',6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl Environ Microbiol 1992; 58:2158–2163 [View Article] [PubMed]
    [Google Scholar]
  21. Stahl DA, Poulsen LK, Stahl DA. Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl Environ Microbiol 1993; 59:682–686
    [Google Scholar]
  22. Carpentier F, Carpentier F, L'haridon S, Schüler M, Michel G et al. Description of Maribacter forsetii sp. nov., a marine Flavobacteriaceae isolated from North Sea water, and emended description of the genus Maribacter. Int J Syst Evol Microbiol 2008; 58:790–797 [View Article] [PubMed]
    [Google Scholar]
  23. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2017; 1–7:
    [Google Scholar]
  24. Saitou N, Nei M. The Neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article] [PubMed]
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  29. Minh BQ, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 2016; 44:W232–W235
    [Google Scholar]
  30. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  32. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  33. Lipman DJ, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 1988; 85:2444–2448 [View Article] [PubMed]
    [Google Scholar]
  34. Goris J, Coenye T, Vandamme P, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  35. Liles MR, Beaz-Hidalgo R, Hossain MJ, Liles MR. Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. Genome Announc 2014; 2:2–3 [View Article] [PubMed]
    [Google Scholar]
  36. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466
    [Google Scholar]
  37. Göker M, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article] [PubMed]
    [Google Scholar]
  40. Chernysheva N, Bystritskaya E, Stenkova A, Golovkin I, Nedashkovskaya O et al. Comparative genomics and CAZyme genome repertoires of marine Zobellia amurskyensis KMM 3526T and Zobellia laminariae KMM 3676T. Mar Drugs 2019; 17:661 [View Article] [PubMed]
    [Google Scholar]
  41. Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S et al. MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 2013; 41:D636–47 [View Article] [PubMed]
    [Google Scholar]
  42. Henrissat B, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014; 42:D490–D495 [View Article] [PubMed]
    [Google Scholar]
  43. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  44. Göker M, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article] [PubMed]
    [Google Scholar]
  45. Fanuel M, Fanuel M, Ropartz D, Rogniaux H, Larocque R et al. The agar-specific hydrolase ZgAgaC from the marine bacterium Zobellia galactanivorans defines a new GH16 protein subfamily. J Biol Chem 2019; 294:6923–6939 [View Article] [PubMed]
    [Google Scholar]
  46. Thomas F, Thomas F, Barbe V, Teeling H, Schenowitz C et al. Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: example of the model algae-associated bacterium Zobellia galactanivorans DsijT. Environ Microbiol 2016; 18:4610–4627 [View Article] [PubMed]
    [Google Scholar]
  47. Préchoux A, Préchoux A, Thomas F, Rochat T, Larocque R et al. Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nat Commun 2017; 8:
    [Google Scholar]
  48. Lundqvist LCE, Lundqvist LCE, Jam M, Jeudy A, Barbeyron T et al. Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate. J Biol Chem 2013; 288:23021–23037 [View Article] [PubMed]
    [Google Scholar]
  49. Thomas F, Génicot S, Czjzek M, Génicot S, Czjzek M et al. Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environ Microbiol 2012; 14:2379–2394 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004913
Loading
/content/journal/ijsem/10.1099/ijsem.0.004913
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error