1887

Abstract

A Gram-stain-negative, rod-shaped, non-motile, non-spore-forming, aerobic, yellow-pigmented bacterium was isolated from chicken feather waste collected from an abattoir in Bloemfontein, South Africa. A polyphasic taxonomy study was used to describe and name the bacterial isolate, strain 1_F178. The 16S rRNA gene sequence analysis and sequence comparison data indicated that strain 1_F178 was a member of the genus and was closely related to (99.1%) and (98.7%). Overall genome similarity metrics (average nucleotide identity, digital DNA–DNA hybridization and average amino acid identity) revealed greatest similarity to the and type strains but were below the threshold for species delineation. Genome sequencing revealed a genome size of 6.18 Mbp and a G+C content of 35.6 mol%. The major respiratory quinone and most abundant polar lipid of strain 1_F178 were menaquinone-6 and phosphatidylethanolamine, respectively. Strain 1_F178 had a typical fatty acid composition for species. On the basis of physiological, genotypic, phylogenetic and chemotaxonomic data, strain 1_F178 constitutes a novel species of , for which the name sp. nov. is proposed. The type strain is 1_F178 (=LMG 30779=KCTC 62759).

Keyword(s): Chryseobacterium , pennae and taxonomy
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004912
2021-07-22
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/7/ijsem004912.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004912&mimeType=html&fmt=ahah

References

  1. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B. New perspectives in the Classification of the Flavobacteria: Description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994; 44:827–831
    [Google Scholar]
  2. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  3. García-López M, Meier-Kolthoff JP, Tindall B, Gronow S, Woyke T. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 2019; 10:2083 [View Article] [PubMed]
    [Google Scholar]
  4. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME et al. Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 2020; Jan 2:ijsem003935
    [Google Scholar]
  5. Hugo C, Bernardet JF, Nicholson A, Kämpfer P. Genus Chryseobacterium. Whitman W, Trust B. eds In Bergey’s Manual of Systematics of Archaea and Bacteria Hoboken, New Jersey: John Wiley & Sons, Inc., in association with Bergeys Manual Trust; 2019 pp 1–107
    [Google Scholar]
  6. de Beer H, Hugo CJ, Jooste PJ, Vancanneyt M, Coenye T et al. Chryseobacterium piscium sp. nov., isolated from fish of the South Atlantic Ocean off South Africa. Int J Syst Evol Microbiol 2006; 56:1317–1322 [View Article] [PubMed]
    [Google Scholar]
  7. de Beer H, Hugo CJ, Jooste PJ, Willems A, Vancanneyt M. Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. Int J Syst Evol Microbiol 2005; 55:2149–2153 [View Article] [PubMed]
    [Google Scholar]
  8. Charimba G, Jooste P, Albertyn J, Hugo C. Chryseobacterium carnipullorum sp. nov., isolated from raw chicken. Int J Syst Evol Microbiol 2013; 63:3243–3249 [View Article] [PubMed]
    [Google Scholar]
  9. Hantsis-Zacharov E, Shaked T, Senderovich Y, Halpern M. Chryseobacterium oranimense sp. nov., a psychrotolerant, proteolytic and lipolytic bacterium isolated from raw cow’s milk. Int J Syst Evol Microbiol 2008; 58:2635–2639 [View Article] [PubMed]
    [Google Scholar]
  10. Callon C, Duthoit F, Delbès C, Ferrand M, Le Frileux Y et al. Stability of microbial communities in goat milk during a lactation year: molecular approaches. Syst Appl Microbiol 2007; 30:547–560 [View Article] [PubMed]
    [Google Scholar]
  11. Oosthuizen L, Charimba G, Hitzeroth A, Nde AL, Steyn L et al. Chryseobacterium pennipullorum sp. nov., isolated from poultry feather waste. Int J Syst Evol Microbiol 2019; 69:2380–2387 [View Article] [PubMed]
    [Google Scholar]
  12. Venter H, Osthoff G, Litthauer D. Purification and characterization of a metalloprotease from Chryseobacterium indologenes Ix9a and determination of the amino acid specificity with electrospray mass spectrometry. Protein Express Purif 1999; 15:282–295
    [Google Scholar]
  13. Wolochow H, Thornton HR, Hood EG. Studies on surface taint butter: VI. Other bacterial species as causal agents. Flavobacterium Maloloris (n. sp.). Sci Agric 1942; 22:637–644
    [Google Scholar]
  14. Jooste PJ, Britz TJ, Lategan PM. The prevalence and significance of Flavobacterium strains in commercial salted butter. Milchwissenschaft 1986; 41:69–73
    [Google Scholar]
  15. Everton JR, Bean PG, Bashford TE. Spoilage of canned milk products by flavobacteria. Int J Food Sci Tech 1968; 3:241–247
    [Google Scholar]
  16. Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 2002; 48:772–786 [View Article] [PubMed]
    [Google Scholar]
  17. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28:1647–1549 [View Article] [PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  19. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  20. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351
    [Google Scholar]
  21. Tamura K, Stecher G, Kumar S. MEGA version 7.0.14; 2019 http://www.megasoftware.net/
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  23. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  25. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  26. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol 2018; 36:566–569 [View Article] [PubMed]
    [Google Scholar]
  27. Parks D, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  28. Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol 2020; 38:1079–1086 [View Article] [PubMed]
    [Google Scholar]
  29. Kuznetsov A, Bollin CJ. NCBI genome Workbench: Desktop software for comparative genomics, visualization, and Genbank data submission. Meth Molec Biol 2020; 2231:261–295
    [Google Scholar]
  30. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:1–15
    [Google Scholar]
  31. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST. Nucleic Acids Res 2014; 42:D206–D214 [View Article]
    [Google Scholar]
  32. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:1–10
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  34. Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  35. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  36. MacFaddin JF. Biochemical Tests for Identification of Medical Bacteria, 2nd ed. Baltimore: Williams and Wilkins; 1980
    [Google Scholar]
  37. Jooste PJ, Britz TJ, De Haust J. A numerical taxonomic study of Flavobacterium-Cytophaga strains from dairy sources. J Appl Bacteriol 1985; 59:311–323
    [Google Scholar]
  38. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: University Press; 1993
    [Google Scholar]
  39. Holmes B, Lapage SP, Malnick H. Strains of Pseudomonas putrefaciens from clinical material. J Clin Pathol 1975; 28:149–155 [View Article] [PubMed]
    [Google Scholar]
  40. Richard C, Kiredjian M. Laboratory Methods for the Identification of Strictly Aerobic Bacilli Paris: Intstitut Pasteur; 1995
    [Google Scholar]
  41. Hugo CJ, Jooste PJ. Preliminary differentiation of food strains of Chryseobacterium and Empedobacter using multilocus enzyme electrophoresis. Food Microbiol 1997; 14:133–142
    [Google Scholar]
  42. Yabuuchi E, Hashimoto Y, Ezaki T, Ido Y, Takeuchi N. Genotypic and phenotypic differentiation of Flavobacterium indologenes Yabuuchi et al 1983 from Flavobacterium gleum Holmes et al 1984. Microbiol Immunol 1990; 34:73–76 [View Article] [PubMed]
    [Google Scholar]
  43. West PA, Colwell RR. Identification and classification of the Vibrionaceae – an overview. Colwell R. eds In Vibrios in the Environment New York: John Wiley & Sons; 1984 pp 285–363
    [Google Scholar]
  44. Sasser M. Technical note #101: Microbial identification by gas chromatographic analysis of fatty acid methyl esters (GC-FAME; 20091–6
  45. Nguyen TM, Kim J. A rapid and simple method for identifying bacterial polar lipid components in wet biomass. J Microbiol 2017; 55:635–639 [View Article] [PubMed]
    [Google Scholar]
  46. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004912
Loading
/content/journal/ijsem/10.1099/ijsem.0.004912
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error