1887

Abstract

The genus (family ) can be found in diverse environments. In this study, seven novel strains were isolated from glaciers in PR China and subjected to taxonomic research. Phylogenetic analyses based on the 16S rRNA gene revealed that the strains belonged to the genus . None of the seven strains grew at temperatures above 22 °C, indicating that they are psychrophilic. Furthermore, the average nucleotide identity (ANI) values of the seven strains were calculated and indicated that they represented two novel species in . Strain LB3P56 was most closely related to IMCC26223 (97.70 %) and strain GSP16 was most closely related to 0533 (98.03 %). The ANI values between the two strains and their closest relatives were less than 83.47 %, which was much lower than the threshold for species delineation of 95–96 %. Therefore, we propose two novel species, sp. nov. (LB3P56=CGMCC 1.11934=NBRC 113651) and sp. nov. (GSP16=CGMCC 1.24642=NBRC 113664).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31670003)
    • Principle Award Recipient: Yu-HuaXin
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004868
2021-07-06
2021-07-29
Loading full text...

Full text loading...

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM et al. Genus II. In Flavobacterium gen. nov. In: Bergey’s Manual of Determinative Bacteriology, 1st ed. edn Baltimore, MD: Williams and Wilkins; 1923 pp 97–117
    [Google Scholar]
  2. Reichenbach H. Order I. Cytophagales Leadbetter 1974. In Bergey’s Manual of Systematic Bacteriology 1989 pp 2011–2013
    [Google Scholar]
  3. Bernardet JF, Bowman JP. The genus Flavobacterium gen. nov. In The Prokaryotes: a Handbook on the Biology of Bacteria 2006 pp 481–531
    [Google Scholar]
  4. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of flavobacterium and cytophaga-like bacteria of the international committee on systematics of prokaryotes. Proposed minimal standards for describing new taxa of the family flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070
    [Google Scholar]
  5. Zhang G, Xian W, Chu Q, Yang J, Liu W et al. Flavobacterium terriphilum sp. nov., isolated from soil. Int J Syst Evol Microbiol 2016; 66:4276–4281 [View Article] [PubMed]
    [Google Scholar]
  6. Dahal RH, Chaudhary DK, Kim J. Flavobacterium flaviflagrans sp. nov., a bacterium of the family Flavobacteriaceae isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:2653–2659 [View Article] [PubMed]
    [Google Scholar]
  7. Zamora L, Vela AI, Sánchez-Porro C, Palacios MA, Moore ERB et al. Flavobacterium tructae sp. nov. and Flavobacterium piscis sp. nov., isolated from farmed rainbow trout (Oncorhynchus mykiss. Int J Syst Evol Microbiol 2014; 64:392–399 [View Article] [PubMed]
    [Google Scholar]
  8. Vela AI, Fernandez A, Sánchez-Porro C, Sierra E, Mendez M et al. Flavobacterium ceti sp. nov., isolated from beaked whales (Ziphius cavirostris. Int J Syst Evol Microbiol 2007; 57:2604–2608 [View Article] [PubMed]
    [Google Scholar]
  9. Van Trappen S, Vandecandelaere I, Mergaert J, Swings J. Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 2004; 54:85–92 [View Article] [PubMed]
    [Google Scholar]
  10. Yi H, Oh H-M, Lee J-H, Kim S-J, Chun J. Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 2005; 55:637–641
    [Google Scholar]
  11. Yang LL, Liu Q, Liu HC, Zhou YG, Xin YH. Flavobacterium laiguense sp. nov., a psychrophilic bacterium isolated from Laigu glacier on the Tibetan Plateau. Int J Syst Evol Microbiol 2019; 69:1821–1825 [View Article] [PubMed]
    [Google Scholar]
  12. Zhang DC, Wang HX, Liu HC, Dong XZ, Zhou PJ. Flavobacterium glaciei sp. nov., a novel psychrophilic bacterium isolated from the China No.1 glacier. Int J Syst Evol Microbiol 2006; 56:2921–2925 [View Article] [PubMed]
    [Google Scholar]
  13. Aslam Z, Im W-T, Kim MK, Lee S-T. Flavobacterium granuli sp. nov., isolated from granules used in a wastewater treatment plant. Int J Syst Evol Microbiol 2005; 55:747–751
    [Google Scholar]
  14. Park M, Song J, Nam GG, Kim S, Joung Y et al. Flavobacterium lacicola sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2018; 68:1565–1570 [View Article] [PubMed]
    [Google Scholar]
  15. Ali Z, Cousin S, Frühling A, Brambilla E, Schumann P et al. Flavobacterium rivuli sp. nov., Flavobacterium subsaxonicum sp. nov., Flavobacterium swingsii sp. nov. and Flavobacterium reichenbachii sp. nov., isolated from a hard water rivulet. Int J Syst Evol Microbiol 2009; 59:2610–2617 [View Article] [PubMed]
    [Google Scholar]
  16. Cousin S, Päuker O, Stackebrandt E. Flavobacterium aquidurense sp. nov. and Flavobacterium hercynium sp. nov., from a hard-water creek. Int J Syst Evol Microbiol 2007; 57:243–249 [View Article]
    [Google Scholar]
  17. Zhu L, Liu Q, Liu HC, Zhang JL, Dong XZ et al. Flavobacterium noncentrifugens sp. nov., a psychrotolerant bacterium isolated from glacier meltwater. Int J Syst Evol Microbiol 2013; 63:2032–2037 [View Article] [PubMed]
    [Google Scholar]
  18. Xu M, Xin Y, Tian J, Dong K, Yu Y et al. Flavobacterium sinopsychrotolerans sp. nov., isolated from a glacier. Int J Syst Evol Microbiol 2011; 61:20–24 [View Article] [PubMed]
    [Google Scholar]
  19. Xin YH, Liang ZH, Zhang DC, Liu HC, Zhang JL et al. Flavobacterium tiangeerense sp. nov., a cold-living bacterium isolated from a glacier. Int J Syst Evol Microbiol 2009; 59:2773–2777 [View Article] [PubMed]
    [Google Scholar]
  20. Dong K, Liu H, Zhang J, Zhou Y, Xin Y. Flavobacterium xueshanense sp. nov. and Flavobacterium urumqiense sp. nov., two psychrophilic bacteria isolated from glacier ice. Int J Syst Evol Microbiol 2012; 62:1151–1157 [View Article] [PubMed]
    [Google Scholar]
  21. Liu Q, Liu H, Zhang J, Zhou Y, Xin Y. Cryobacterium levicorallinum sp. nov., a psychrophilic bacterium isolated from glacier ice. Int J Syst Evol Microbiol 2013; 63:2819–2822 [View Article] [PubMed]
    [Google Scholar]
  22. Lane DJ. 16S/23S rRNA sequencing. Stackebrandt E, Goodfellow M. eds In Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991 pp 115–175
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing Ezbiocloud: A taxonomically united database of 16s rrna gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article] [PubMed]
    [Google Scholar]
  25. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. Spades: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  26. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  27. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  28. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  29. Kim M, HS O, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  31. Liu Q, Li W, Liu D, Li L, Li J et al. Light stimulates anoxic and oligotrophic growth of glacial flavobacterium strains that produce zeaxanthin. ISME J 2021; 15:1844–1857 [View Article] [PubMed]
    [Google Scholar]
  32. Smibert RM, Krieg NR. Phenotypic characterization. Gerhardt P, Murray R, Wood W, Krieg N. eds In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  33. Collins MD. Isoprenoidquinone analysis in classification and identification. Goodfellow M, Minnikin D. eds In Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 267–287
    [Google Scholar]
  34. Komagata K, Suzuki K. 4 Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988161–207
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  36. Nam GG, Joung Y, Park M, Kim S, Jeon HT et al. Flavobacterium soyangense sp. nov., a psychrotolerant bacterium, isolated from an oligotrophic freshwater lake. Int J Syst Evol Microbiol 2017; 67:2440–2445 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004868
Loading
/content/journal/ijsem/10.1099/ijsem.0.004868
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error