1887

Abstract

A novel Gram-stain-positive bacterium was isolated from a purulent bovine milk sample, the bovine placenta from an abortion, the udder secretion of a heifer and the lung of a pig that had succumbed from suppurative bronchopneumonia in Switzerland from 2015 to 2019. The strains grew best under aerobic conditions with 5 % CO and colonies were non-haemolytic and greyish-white. They were non-motile and negative for catalase and oxidase. The genomes of the four strains 19M2397, 15A0121, 15IMD0307 and 19OD0592 were obtained by sequencing. The results of phylogenetic analyses based on the 16S rRNA gene grouped them within the genus in the family . The genomes had DNA G+C contents of 61.2–62.2 mol% and showed digital DNA–DNA hybridization (dDDH) values of 21.4–22.8 % and average nucleotide identity (ANI) values of approximately 77 % to their closest relatives and . With respect to the presence in different livestock species we propose the name sp. nov. The type strain is 19M2397 (=CCOS 1952=DSM 111392), isolated from the udder secretion of a heifer diagnosed with summer mastitis in 2019.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004848
2021-06-23
2024-05-13
Loading full text...

Full text loading...

References

  1. Salam N, Jiao JY, Zhang XT, WJ L. Update on the classification of higher ranks in the phylum Actinobacteria. Int J Syst Evol Microbiol 2020; 70:1331–1355 [View Article]
    [Google Scholar]
  2. Yassin AF, Hupfer H, Siering C, Schumann P. Comparative chemotaxonomic and phylogenetic studies on the genus Arcanobacterium Collins et al. 1982 emend. Lehnen et al. 2006: proposal for Trueperella gen. nov. and emended description of the genus Arcanobacterium. Int J Syst Evol Microbiol 2011; 61:1265–1274 [View Article] [PubMed]
    [Google Scholar]
  3. Rzewuska M, Kwiecień E, Chrobak-Chmiel D, Kizerwetter-Świda M, Stefańska I. Pathogenicity and virulence of Trueperella pyogenes: A Review. Int J Mol Sci 2019; 20:11 [View Article]
    [Google Scholar]
  4. Chirico J, Jonsson P, Kjellberg S, Thomas G. Summer mastitis experimentally induced by Hydrotaea irritans exposed to bacteria. Med Vet Entomol 1997; 11:187–192 [View Article] [PubMed]
    [Google Scholar]
  5. Ishiyama D, Mizomoto T, Ueda C, Takagi N, Shimizu N et al. Factors affecting the incidence and outcome of Trueperella pyogenes mastitis in cows. J Vet Med Sci 2017; 79:626–631 [View Article]
    [Google Scholar]
  6. Thomas G, Over HJ, Vecht U, Nansen P. Summer Mastitis, 1st. edn Dordrecht: Martinus Nijhoff Publishers; 1987 [View Article]
    [Google Scholar]
  7. Azuma R, Murakami S, Ogawa A, Okada Y, Miyazaki S et al. Arcanobacterium abortisuis sp. nov., isolated from a placenta of a sow following an abortion. Int J Syst Evol Microbiol 2009; 59:1469–1473 [View Article] [PubMed]
    [Google Scholar]
  8. Metzner M, Erhard M, Sammra O, Nagib S, Hijazin M et al. Trueperella abortisuis, an emerging pathogen isolated from pigs in Germany. Berl Munch Tierarztl Wochenschr 2013; 126:423–426 [PubMed]
    [Google Scholar]
  9. SRUCVS Trueperella abortisuis causing abortion in pigs in Scotland. Vet Rec 2019; 185:162–165
    [Google Scholar]
  10. Wickhorst J-P, Hassan AA, Sammra O, Alssahen M, Lämmler C et al. First report on the isolation of Trueperella abortisuis from companion animals. Res Vet Sci 2019; 125:465–467 [View Article] [PubMed]
    [Google Scholar]
  11. Weitzel T, Braun S, Porte L. Arcanobacterium bernardiae bacteremia in a patient with deep soft tissue infection. Surg Infect (Larchmt) 2011; 12:83–84 [View Article] [PubMed]
    [Google Scholar]
  12. Hijazin M, Metzner M, Erhard M, Nagib S, Alber J et al. First description of Trueperella (Arcanobacterium) bernardiae of animal origin. Vet Microbiol 2012; 159:515–518 [View Article] [PubMed]
    [Google Scholar]
  13. Otto MP, Foucher B, Lions C, Dardare E, Gérôme P. Infection sous-cutanée à Trueperella bernardiae compliquée d’une bactériémie. Médecine et Maladies Infectieuses 2013; 43:487–489 [View Article]
    [Google Scholar]
  14. Cobo F, Rodríguez-Granger J, Sampedro A, Gutiérrez-Fernández J, Navarro-Marí JM. Two rare cases of wound infections caused by Trueperella bernardiae. Jpn J Infect Dis 2017; 70:682–684 [View Article] [PubMed]
    [Google Scholar]
  15. Calatrava E, Borrego J, Cobo F. Breast abscess due to Trueperella bernardiae and Actinotignum sanguinis. Rev Esp Quimioter 2019; 32:200–202 [PubMed]
    [Google Scholar]
  16. Pan J, Ho AL, Pendharkar AV, Sussman ES, Casazza M et al. Brain abscess caused by Trueperella bernardiae in a child. Surg Neurol Int 2019; 10:35
    [Google Scholar]
  17. Lehnen A, Busse H-J, Frölich K, Krasinska M, Kämpfer P et al. Arcanobacterium bialowiezense sp. nov. and Arcanobacterium bonasi sp. nov., isolated from the prepuce of European bison bulls (Bison bonasus) suffering from balanoposthitis, and emended description of the genus Arcanobacterium Collins et al. 1983. Int J Syst Evol Microbiol 2006; 56:861–866 [View Article]
    [Google Scholar]
  18. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989; 8:151–156 [View Article]
    [Google Scholar]
  19. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  20. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. CANU: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  21. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA et al. Circlator: Automated circularization of genome assemblies using long sequencing reads. Genome Biol 2015; 16:294 [View Article] [PubMed]
    [Google Scholar]
  22. Kuhnert P, Capaul SE, Nicolet J, Frey J. Phylogenetic positions of Clostridium chauvoei and Clostridium septicum based on 16S rRNA gene sequences. Int J Syst Bacteriol 1996; 46:1174–1176 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article] [PubMed]
    [Google Scholar]
  25. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy. Arch Microbiol 2013; 195:413–418 [View Article] [PubMed]
    [Google Scholar]
  27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  29. Schleifer KH. Classification of Bacteria and Archaea: past, present and future. Syst Appl Microbiol 2009; 32:533–542 [View Article] [PubMed]
    [Google Scholar]
  30. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  32. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the pylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  33. Auch AF, Henz SR, Holland BR, Göker M. Genome blast distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences. BMC Bioinformatics 2006; 7:1–16
    [Google Scholar]
  34. Lee I, Ouk Kim Y, Park S-. C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  35. Emms DM, Kelly S. Orthofinder: Phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  36. Jost BH, Billington SJ. Arcanobacterium pyogenes: molecular pathogenesis of an animal opportunist. Antonie van Leeuwenhoek 2005; 88:87–102 [View Article] [PubMed]
    [Google Scholar]
  37. Bisinotto RS, Filho JCO, Narbus C, Machado VS, Murray E et al. Identification of fimbrial subunits in the genome of Trueperella pyogenes and association between serum antibodies against fimbrial proteins and uterine conditions in dairy cows. J Dairy Sci 2016; 99:3765–3776 [View Article] [PubMed]
    [Google Scholar]
  38. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75:3491–3500 [View Article] [PubMed]
    [Google Scholar]
  39. Nguyen F, Starosta AL, Arenz S, Sohmen D, Dönhöfer A et al. Tetracycline antibiotics and resistance mechanisms. Biol Chem 2014; 395:559–575 [View Article] [PubMed]
    [Google Scholar]
  40. Schumann P. Peptidoglycan strucycan Structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  41. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article] [PubMed]
    [Google Scholar]
  42. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Evol 1988; 38:358–361 [View Article]
    [Google Scholar]
  43. Moss CW, Lambertfair MA. Location of double bonds in monounsaturated fatty acids of Campylobacter cryaerophila with dimethyl disulfide derivatives and combined gas chromatography–mass spectrometry. J Clin Microbiol 1989; 27:1467–1470
    [Google Scholar]
  44. Harvey DJ. Picolinyl esters as derivatives for the structural determination of long chain branched and unsaturated fatty acids. Biomed Mass Spectrom 1982; 9:33–38 [View Article]
    [Google Scholar]
  45. Spitzer V. Structure analysis of fatty acids by gas chromatography - Low resolution electron impact mass spectrometry of their 4,4-dimethyloxazoline derivatives - A review. Prog Lipid Res 1996; 35:387–408 [View Article] [PubMed]
    [Google Scholar]
  46. Yu QT, Liu BN, Zhang JY, Huang ZH. Location of methyl branchings in fatty acids: Fatty acids in uropygial secretion of Shanghai duck by GC-MS of 4,4-dimethyloxazoline derivatives. Lipids 1988; 23:804–810 [View Article]
    [Google Scholar]
  47. Nagib S, Rau J, Sammra O, Lämmler C, Schlez K et al. Identification of Trueperella pyogenes isolated from bovine mastitis by fourier transform infrared spectroscopy. PLoS One 2014; 9:e104654 [View Article] [PubMed]
    [Google Scholar]
  48. Rzewuska M, Stefańska I, Osińska B, Kizerwetter-Świda M, Chrobak D et al. Phenotypic characteristics and virulence genotypes of Trueperella (Arcanobacterium) pyogenes strains isolated from European bison (Bison bonasus. Vet Microbiol 2012; 160:69–76 [View Article] [PubMed]
    [Google Scholar]
  49. Ulbegi-Mohyla H, Hassan AA, Kanbar T, Alber J, Lämmler C et al. Synergistic and antagonistic hemolytic activities of bacteria of genus Arcanobacterium and CAMP-like hemolysis of Arcanobacterium phocae and Arcanobacterium haemolyticum with Psychrobacter phenylpyruvicus. Res Vet Sci 2009; 87:186–188 [View Article] [PubMed]
    [Google Scholar]
  50. Pyörälä S, Jousimies-Somer H, Mero M. Clinical, bacteriological and therapeutic aspects of bovine mastitis caused by aerobic and anaerobic pathogens. Br Vet J 1992; 148:54–62 [View Article]
    [Google Scholar]
  51. CLSI Methods for antimicrobial susceptibility testing of infrequently isolated or fastidious bacteria isolated from animals. In CLSI Supplement Vet06, 1st. edn Clinical and Laboratory Standards Institute; 2017
    [Google Scholar]
  52. Bekuma A, Galmessa U. Review on hygienic milk products practice and occurrence of mastitis in cow’s milk. Agricultural Research & Technology: Open Access Journal 2018; 18:88–97
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004848
Loading
/content/journal/ijsem/10.1099/ijsem.0.004848
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error