1887

Abstract

Six bacterial strains isolated from root nodules of soybean plants that had been inoculated with root-zone soil of legumes native to Canada were previously characterized and 1) placed in two novel lineages within the genus and 2) assigned to symbiovar septentrionale. Here we verified the taxonomic status of these strains using genomic and phenotypic analyses. Phylogenetic analyses of five protein encoding partial gene sequences as well as 52 full length ribosome protein subunit gene sequences confirmed placement of the novel strains in two highly supported lineages distinct from named species. The highest average nucleotide identity values of strains representing these two lineages relative to type strains of closest relatives were 90.7 and 92.3% which is well below the threshold value for bacterial species circumscription. The genomes of representative strains 1S1, 162S2 and 66S1MB have sizes of 10598256, 10733150 and 9032145 bp with DNA G+C contents of 63.5, 63.4 and 63.8 mol%, respectively. These strains possess between one and three plasmids based on copy number of plasmid replication and segregation () genes. Novel strains also possess numerous insertion sequences, and, relative to reference strain USDA110, exhibit inversion and fragmentation of nodulation () and nitrogen-fixation () gene clusters. Phylogenetic analyses of and gene sequences confirmed placement of novel strains in a distinct lineage corresponding to symbiovar septentrionale. Data for morphological, physiological and symbiotic characteristics complement the sequence-based results. The data presented here support the description of two new species for which the names sp. nov. (sv. septentrionale) and sp. nov. (sv. septentrionale) are proposed, with 1S1 (=LMG 29930=HAMBI 3676) and 66S1MB (=LMG 31547=HAMBI 3720) as type strains, respectively.

Funding
This study was supported by the:
  • Agriculture and Agri-Food Canada (Award J-002272)
    • Principle Award Recipient: ApplicableNot
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004831
2021-06-09
2021-06-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/6/ijsem004831.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004831&mimeType=html&fmt=ahah

References

  1. Avontuur JR, Palmer M, Beukes CW, Chan WY, Coetzee MPA. Genome-informed Bradyrhizobium taxonomy: where to from here?. Syst Appl Microbiol 2019; 42:427–439 [View Article][PubMed]
    [Google Scholar]
  2. Ormeño-Orrillo E, Martínez-Romero E. A genomotaxonomy view of the Bradyrhizobium genus. Front Microbiol 2019; 10:1334–1346 [View Article][PubMed]
    [Google Scholar]
  3. Bromfield ESP, Cloutier S, Tambong JT, Tran Thi TV. Soybeans inoculated with root zone soils of Canadian native legumes harbour diverse and novel Bradyrhizobium spp. that possess agricultural potential. Syst Appl Microbiol 2017; 40:447
    [Google Scholar]
  4. Iida T, Itakura M, Anda M, Sugawara M, Isawa T. Symbiosis island shuffling with abundant insertion sequences in the genomes of extra-slow-growing strains of soybean bradyrhizobia. Appl Environ Microbiol 2015; 81:4143–4154 [View Article][PubMed]
    [Google Scholar]
  5. Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev 2014; 38:865–891 [View Article][PubMed]
    [Google Scholar]
  6. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42:D633–D642
    [Google Scholar]
  7. Tang J, Bromfield ESP, Rodrigue N, Cloutier S, Tambong JT. Microevolution of symbiotic Bradyrhizobium populations associated with soybeans in east North America. Ecol Evol 2012; 2:2943–2961 [View Article][PubMed]
    [Google Scholar]
  8. Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol 2020; 37:291–294 [View Article][PubMed]
    [Google Scholar]
  9. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov New Orleans, LA: pp 1–8
    [Google Scholar]
  10. Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 2004; 20:407–415 [View Article][PubMed]
    [Google Scholar]
  11. Yu X, Cloutier S, Tambong JT, Bromfield ESP. Bradyrhizobium ottawaense sp. nov., a symbiotic nitrogen fixing bacterium from root nodules of soybeans in Canada. Int J Syst Evol Microbiol 2014; 64:3202–3207 [View Article][PubMed]
    [Google Scholar]
  12. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article][PubMed]
    [Google Scholar]
  13. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  14. de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1863
    [Google Scholar]
  15. Rivas R, Martens M, de Lajudie P, Willems A. Multilocus sequence analysis of the genus Bradyrhizobium . Syst Appl Microbiol 2009; 32:101–110 [View Article][PubMed]
    [Google Scholar]
  16. Parker MA. The spread of Bradyrhizobium lineages across host legume clades: from Abarema to Zygia. Microb Ecol 2015; 69:630–640 [View Article][PubMed]
    [Google Scholar]
  17. Lindström K, Amsalu AA, Mousavi SA. Evolution and taxonomy of nitrogen-fixing organisms with emphasis on rhizobia. de Bruijn F. eds In Biological Nitrogen Fixation Hoboken, NJ: John Wiley & Sons; 2015 pp 21–38
    [Google Scholar]
  18. Wasai-Hara S, Minamisawa K, Cloutier S, Bromfield ESP. Strains of Bradyrhizobium cosmicum sp. nov., isolated from contrasting habitats in Japan and Canada possess photosynthesis gene clusters with the hallmark of genomic islands. Int J Syst Evol Microbiol 2020; 70:5063–5074 [View Article][PubMed]
    [Google Scholar]
  19. Stothard P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 2000; 28:1102–1104 [View Article][PubMed]
    [Google Scholar]
  20. Ardui S. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 2018; 46:2159–2168 [View Article][PubMed]
    [Google Scholar]
  21. Pinto U, Pappas K, Winans S. The ABCs of plasmid replication and segregation. Nat Rev Microbiol 2012; 10:755–765 [View Article][PubMed]
    [Google Scholar]
  22. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–D36 [View Article]
    [Google Scholar]
  23. Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M. ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol 2011; 12:R30R30 [View Article][PubMed]
    [Google Scholar]
  24. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T. Complete Genomic Sequence of Nitrogen-fixing Symbiotic Bacterium Bradyrhizobium japonicum USDA110 DNA Res; 2002 pp 189–197
    [Google Scholar]
  25. Kaneko T, Maita H, Hirakawa H, Uchiike N, Minamisawa K. Complete genome sequence of the soybean symbiont Bradyrhizobium japonicum strain USDA6T. Genes (Basel) 2011; 2:763–787 [View Article][PubMed]
    [Google Scholar]
  26. Bromfield ESP, Cloutier S, Nguyen HDT. Description and complete genome sequences of Bradyrhizobium symbiodeficiens sp. nov., a non-symbiotic bacterium associated with legumes native to Canada. Int J Syst Evol Microbiol 2020; 70:442–449 [View Article][PubMed]
    [Google Scholar]
  27. Bromfield ESP, Cloutier S, Nguyen HDT. Description and complete genome sequence of Bradyrhizobium amphicarpaeae sp. nov., harbouring photosystem and nitrogen-fixation genes. Int J Syst Evol Microbiol 2019; 69:2841–2848 [View Article][PubMed]
    [Google Scholar]
  28. Okazaki S, Noisangiam R, Okubo T, Kaneko T, Oshima K. Genome analysis of a novel Bradyrhizobium sp. DOA9 carrying a symbiotic plasmid. PLoS One 2015; 10:e0117392–10
    [Google Scholar]
  29. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E. Legume symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 2007; 316:1307–1312 [View Article][PubMed]
    [Google Scholar]
  30. Rivas R, Willems A, Palomo JL, García-Benavides P, Mateos PF. Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. Int J Syst Evol Microbiol 2004; 54:1271–1275 [View Article][PubMed]
    [Google Scholar]
  31. Cloutier S, Bromfield ESP. Analysis of the complete genome sequence of the widely studied strain Bradyrhizobium betae PL7HG1T reveals the presence of photosynthesis genes and a putative plasmid. Microbiol Resour Announc 2019; 8:e01282–19 [View Article][PubMed]
    [Google Scholar]
  32. Passaglia LMP. Bradyrhizobium elkanii nod regulon: insights through genomic analysis. Genet Mol Biol 2017; 40:703–716 [View Article][PubMed]
    [Google Scholar]
  33. Plague GR. Intergenic transposable elements are not randomly distributed in bacteria. Genome Biol Evol 2010; 2:584–590 [View Article][PubMed]
    [Google Scholar]
  34. Staehelin C, Krishnan HB. Nodulation outer proteins: double-edged swords of symbiotic rhizobia. Biochem J 2015; 470:263–274 [View Article][PubMed]
    [Google Scholar]
  35. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 2018; 68:2386–2392 [View Article][PubMed]
    [Google Scholar]
  36. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. Jspeciesws: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article]
    [Google Scholar]
  38. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology (Reading) 2012; 158:1005–1015 [View Article][PubMed]
    [Google Scholar]
  39. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [View Article][PubMed]
    [Google Scholar]
  40. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article][PubMed]
    [Google Scholar]
  41. Garrity GM, Bell JA. Family VII. Bradyrhizobiaceae fam. nov. In Brenner D, Krieg N, Staley J, Garrity G. eds In Bergey’s Manual of Systematic Bacteriology, 2. edn New York: Springer; 2005 p 438
    [Google Scholar]
  42. Tighe SW, de Lajudie P, Dipietro K, Lindström K, Nick G et al. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 2000; 50:787–801 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004831
Loading
/content/journal/ijsem/10.1099/ijsem.0.004831
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error