1887

Abstract

Two Gram-stain-negative, moderately halophilic, non-motile, rod-shaped, pale yellow, and aerobic strains, designated WDS1C4 and WDS4C29, were isolated from a marine solar saltern in Weihai, Shandong Province, PR China. Growth of strain WDS1C4 occurred at 10–45 °C (optimum, 37 °C), with 4–16 % (w/v) NaCl (optimum, 8 %) and at pH 6.5–9.0 (optimum, pH 7.5). Growth of strain WDS4C29 occurred at 10–45 °C (optimum, 40 °C), with 2–18 % (w/v) NaCl (optimum, 6 %) and at pH 6.5–9.0 (optimum, pH 7.5). Q-10 was the sole respiratory quinone of the two strains. The major polar lipids of strains WDS1C4 and WDS4C29 were phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. The major cellular fatty acid in strains WDS1C4 and WDS4C29 was C 7, and the genomic DNA G+C contents of strains WDS1C4 and WDS4C29 were 67.6 and 63.3 mol%, respectively. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strains WDS1C4 and WDS4C29 were members of the family and showed 94.3 and 95.3 % similarities to their closest relative, , respectively. The similarity between WDS1C4 and WDS4C29 was 97.3 %. Differential phenotypic and genotypic characteristics of the two isolates from recognized genera showed that the two strains should be classified as representing two novel species in a new genus for which the names gen. nov., sp. nov. (type species, type strain WDS1C4=MCCC 1H00179=KCTC 52542) and sp. nov. (WDS4C29=MCCC 1H00175=KCTC 52541) are proposed.

Funding
This study was supported by the:
  • National Science and Technology Fundamental Resources Investigation Program of China (Award 2019FY100700)
    • Principle Award Recipient: Zong-JunDu
  • National Natural Science Foundation of China (Award 32070002, 31770002)
    • Principle Award Recipient: Zong-JunDu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004808
2021-06-25
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/6/ijsem004808.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004808&mimeType=html&fmt=ahah

References

  1. Garrity GM, Bell JA, Lilburn T, Class I. Alphaproteobacteria class. nov. Brenner D, Krieg N, Stanley J, Garrity G. eds In Bergey’s Manual of Systematic Bacteriology, 2nd. edn New York, NY: Springer; 2005
    [Google Scholar]
  2. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM. Analysis of 1000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [PubMed]
    [Google Scholar]
  3. Liu Q-Q, Wang Y, Li J, Du Z-J, Chen G-J. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans. Int J Syst Evol Microbiol 2014; 64:2204–2209
    [Google Scholar]
  4. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: A prokaryotic 16s rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [PubMed]
    [Google Scholar]
  5. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  6. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  7. HTL V, Malimas T, Chaipitakchonlatarn W, VTT B, Yukphan P. Evolutionary trees from DNA sequences: a maximum likelihood approach. Annals microbiol 2016; 66:368–376
    [Google Scholar]
  8. Tamura K, Kumar S, Stecher G. mega7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  9. Buczkowska K, Sawicki J, Szczecińska M, Klama H, Bączkiewicz A. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 2012; 298:783–791
    [Google Scholar]
  10. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  11. Angiuoli S, Gussman A, Klimke W, Cochrane G, Field D. Toward an online repository of standard operating procedures (SOPs) for (meta)genomic annotation. OMI A J Integr Biol 2008137–141
    [Google Scholar]
  12. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–D462 [View Article]
    [Google Scholar]
  13. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: Rapid annotations using Subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  14. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P et al. Antismash: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 2011; 39:W339–46 [View Article]
    [Google Scholar]
  15. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:281–285
    [Google Scholar]
  16. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PloS One 2010; 5:e9490
    [Google Scholar]
  17. Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic acids Res 2016; 44:W232–W235
    [Google Scholar]
  18. Rodriguez-R L, Konstantinidis KT. The Enveomics collection: A toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr 2016; 4:e1900v1 [View Article]
    [Google Scholar]
  19. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  20. Hu X, Liu J, Liu H, Zhuang G, Xun L. Sulfur metabolism by marine heterotrophic bacteria involved in sulfur cycling in the ocean. Sci China Earth Sci 2018; 61:1369–1378 [View Article]
    [Google Scholar]
  21. Kappler U, Maher MJ. The bacterial SoxAX cytochromes. Cell Mol Life Sci 2013; 70:977–992 [View Article] [PubMed]
    [Google Scholar]
  22. Quentmeier A, Hellwig P, Bardischewsky F, Grelle G, Kraft R et al. Sulfur oxidation in Paracoccus pantotrophus: Interaction of the sulfur-binding protein SoxYZ with the dimanganese SoxB protein. Biochem Biophys Res Communs 2003; 312:1011–1018
    [Google Scholar]
  23. Quentmeier A, Kraft R, Kostka S, Klockenkämper R, Friedrich CG. Characterization of a new type of sulfite dehydrogenase from Paracoccus pantotrophus GB17. Arch Microbiol 2000; 173:117–125 [View Article]
    [Google Scholar]
  24. Imhoff JF, Rahn T, Künzel S, Neulinger SC. Photosynthesis is widely distributed among proteobacteria as demonstrated by the phylogeny of pufLM reaction center proteins. Front Microbiol 2017; 8:2679 [View Article]
    [Google Scholar]
  25. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E. Microbial genomic taxonomy. BMC Genomics 2013; 14:60–14 [View Article]
    [Google Scholar]
  26. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME. Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 2020; 70:4432–4450 [View Article] [PubMed]
    [Google Scholar]
  27. Aygan A, Arikan B. Mini review an overview on bacterial motility detection. Int J Agri̇cul & Bi̇ology 2007; 9:193–196
    [Google Scholar]
  28. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article]
    [Google Scholar]
  29. Dong XZ, Cai MY. Determination of Biochemical Characteristics. Manual for the Systematic Identification of General Bacteria Beijing: Science Press (In Chinese; 2001 pp 607–654
    [Google Scholar]
  30. ZJ D, Wang Y, Dunlap C, Rooney AP, Chen GJ. Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov. Int J Syst Evol Microbiol 2014; 64:1690–1696
    [Google Scholar]
  31. CLSI Performance Standards for Antimicrobial Susceptibility Testing Wayne, PA: CLSI; 2013
    [Google Scholar]
  32. Athalye M, Noble WC, Minnikin DE. Analysis of cellular fatty acids by gas chromatography as a tool in the identification of medically important coryneform bacteria. J Appl Bacteriol 1985; 58:507–512 [View Article] [PubMed]
    [Google Scholar]
  33. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241
    [Google Scholar]
  34. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–459 [View Article]
    [Google Scholar]
  35. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130
    [Google Scholar]
  36. Lai Q, Cao J, Yuan J, Li F, Shao Z et al. Celeribacter indicus sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium from deep-sea sediment and reclassification of Huaishuia halophila as Celeribacter halophilus comb. nov. Int J Syst Evol Microbiol 2014; 64:4160–4167 [View Article] [PubMed]
    [Google Scholar]
  37. Yoon J-H, Kang S-J, Lee J-S, Oh T-K. Lutimaribacter saemankumensis gen. nov., sp. nov., isolated from a tidal flat of the Yellow Sea. Int J Syst Evol Microbiol 2009; 59:48–52
    [Google Scholar]
  38. Ivanova EP, Webb H, Christen R, Zhukova NV, Kurilenko VV et al. Celeribacter neptunius gen. Nov., sp. Nov., a new member of the class Alphaproteobacteria. Int J Syst Evol Microbiol 2010; 60:1620–1625 [View Article] [PubMed]
    [Google Scholar]
  39. YT O, Avedoza C, Lee SS, Jeong SE, Jia B. Celeribacter naphthalenivorans sp. nov., a naphthalene-degrading bacterium from tidal flat sediment. Int J Syst Evol Microbiol 2015; 65:3073–3078
    [Google Scholar]
  40. Zhang Y, Tang P, Xu Y, Fang W, Wang X. Lutimaribacter marinistellae sp. nov., isolated from a starfish. Int J Syst Evol Microbiol 2016; 66:3675–3680 [View Article] [PubMed]
    [Google Scholar]
  41. Iwaki H, Yasukawa N, Fujioka M, Takada K, Hasegawa Y. Isolation and characterization of a marine cyclohexylacetate-degrading bacterium Lutimaribacter litoralis sp. nov., and reclassification of Oceanicola pacificus as Lutimaribacter pacificus comb. nov. Curr Microbiol 2013; 66:588–593 [View Article] [PubMed]
    [Google Scholar]
  42. Lai Q, Li G, Liu X, Du Y, Sun F et al. Pseudooceanicola atlanticus gen. nov. sp. nov., isolated from surface seawater of the Atlantic Ocean and reclassification of Oceanicola batsensis, Oceanicola marinus, Oceanicola nitratireducens, Oceanicola nanhaiensis, Oceanicola antarcticus and Oceanicol. Antonie van Leeuwenhoek 2015; 107:1065–1074
    [Google Scholar]
  43. Suzuki T, Muroga Y, Takahama M, Nishimura Y. Roseivivax halodurans gen. nov., sp. nov. and Roseivivax halotolerans sp. nov., aerobic bacteriochlorophyll-containing bacteria isolated from a saline lake. Int J Syst Bacteriol 1999; 49:629–634
    [Google Scholar]
  44. Chen MH, Sheu SY, Chen CA, Wang JT, Chen WM. Roseivivax isoporae sp. nov., isolated from a reef-building coral, and emended description of the genus Roseivivax. Int J Syst Evol Microbiol 2012; 62:1259–1264 [View Article] [PubMed]
    [Google Scholar]
  45. Park S, Kim S, Jung YT, Yoon JH. Marivivens donghaensis gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016; 66:666–672 [View Article] [PubMed]
    [Google Scholar]
  46. Hu D, Wang L, Lai Q, Sun F, Shao Z. Marivivens niveibacter sp. nov., isolated from the seawater of tropical mangrove. Int J Syst Evol Microbiol 2018; 68:570–574 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.004808
Loading
/content/journal/ijsem/10.1099/ijsem.0.004808
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error