1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped and non-motile bacterium was isolated from a liquid culture of dinoflagellate and further designated as LMIT004. Optimal growth was observed at 25 °C, pH 7.0 and in the presence of 2 % (w/v) NaCl. Oxidase and catalase were positive. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain LMIT004 showed high similarities to type strains SM17004 (96.77 %) and JCM11811 (95.60 %) but formed a separate branch in the genus . The G+C content of strain LMIT004 was 39.0 mol%. The dominant fatty acids were iso-C and iso-C G. The polar lipids mainly contained phosphatidylethanolamine, five unidentified phospholipids and five unidentified polar lipids. The sole respiratory quinone was menaquinone-6 (MK-6). The draft genome of the type strain was 3.88 Mbp. The average nucleotide identity values between strain LMIT004 and the two reference strains SM17004 and JCM11811 were 77.47 and 73.49 %, respectively. Based on the polyphasic analysis, strain LMIT004 is suggested to represent a novel specie in the genus of , for which the name sp. nov. is proposed. The type strain is LMIT004 (=CICC 24871=KCTC 72948).

Funding
This study was supported by the:
  • Guangdong Science and Technology Department (Award 2019A1515011139)
    • Principle Award Recipient: HuiWang
  • Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (Award GML2019ZD0606)
    • Principle Award Recipient: HuiWang
  • Innovative Research Group Project of the National Natural Science Foundation of China (Award 92051118)
    • Principle Award Recipient: HuiWang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004764
2021-03-18
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004764.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004764&mimeType=html&fmt=ahah

References

  1. Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol 2017; 2:17065 [View Article][PubMed]
    [Google Scholar]
  2. Mühlenbruch M, Grossart HP, Eigemann F, Voss M. Mini-review: Phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ Microbiol 2018; 20:2671–2685 [View Article][PubMed]
    [Google Scholar]
  3. Smriga S, Fernandez VI, Mitchell JG, Stocker R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc Natl Acad Sci U S A 2016; 113:1576–1581 [View Article][PubMed]
    [Google Scholar]
  4. Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol 2014; 12:686–698 [View Article][PubMed]
    [Google Scholar]
  5. Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A et al. Substrate–controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 2012; 336:608–611 [View Article][PubMed]
    [Google Scholar]
  6. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article][PubMed]
    [Google Scholar]
  7. Hwang CY, Kim MH, Bae GD, Zhang GI, Kim YH et al. Muricauda olearia sp. nov., isolated from crude-oil-contaminated seawater, and emended description of the genus Muricauda . Int J Syst Evol Microbiol 2009; 59:1856–1861 [View Article][PubMed]
    [Google Scholar]
  8. Yoon JH, Lee MH, Oh T-K, Park Y-H. Muricauda flavescens sp. nov. and Muricauda aquimarina sp. nov., isolated from a salt lake near Hwajinpo Beach of the East Sea in Korea, and emended description of the genus Muricauda . Int J Syst Evol Microbiol 2005; 55:1015–1019 [View Article][PubMed]
    [Google Scholar]
  9. Yoon JH, Kang SJ, Jung YT, Oh T-K. Muricauda lutimaris sp. nov., isolated from a tidal flat of the Yellow Sea. Int J Syst Evol Microbiol 2008; 58:1603–1607 [View Article][PubMed]
    [Google Scholar]
  10. Liu L, Yu M, Zhou S, Fu T, Sun W et al. Muricauda alvinocaridis sp. nov., isolated from shrimp gill from the Okinawa Trough. Int J Syst Evol Microbiol 2020; 70:91666–1671 [View Article][PubMed]
    [Google Scholar]
  11. Park JS. Muricauda hymeniacidonis sp. nov., isolated from sponge of Hymeniacidon sinapium . Int J Syst Evol Microbiol 2019; 69:3800–3805 [View Article][PubMed]
    [Google Scholar]
  12. Dang YR, Sun YY, Sun LL, Yuan XX, Li Y et al. Muricauda nanhaiensis sp. nov., isolated from seawater of the South China Sea. Int J Syst Evol Microbiol 2019; 69:2089–2094 [View Article][PubMed]
    [Google Scholar]
  13. Li G, Lai Q, Yan P, Shao Z. Roseovarius amoyensis sp. nov. and Muricauda amoyensis sp. nov., isolated from the Xiamen coast. Int J Syst Evol Microbiol 2019; 69:3100–3108 [View Article]
    [Google Scholar]
  14. Liu SQ, Sun QL, Sun YY, Yu C, Sun L. Muricauda iocasae sp. nov., isolated from deep sea sediment of the South China Sea. Int J Syst Evol Microbiol 2018; 68:2538–2544 [View Article][PubMed]
    [Google Scholar]
  15. Zhang X, Liu X, Lai Q, Du Y, Sun F et al. Muricauda indica sp. nov., isolated from deep sea water. Int J Syst Evol Microbiol 2018; 68:881–885 [View Article][PubMed]
    [Google Scholar]
  16. Wang Y, Yang X, Liu J, Wu Y, Zhang XH. Muricauda lutea sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2017; 67:1064–1069 [View Article][PubMed]
    [Google Scholar]
  17. Su Y, Yang X, Wang Y, Liu Y, Ren Q et al. Muricauda marina sp. nov., isolated from marine snow of yellow Sea. Int J Syst Evol Microbiol 2017; 67:2446–2451 [View Article][PubMed]
    [Google Scholar]
  18. Zhang Z, Gao X, Qiao Y, Wang Y, Zhang XH. Muricauda pacifica sp. nov., isolated from seawater of the South Pacific Gyre. Int J Syst Evol Microbiol 2015; 65:4087–4092 [View Article][PubMed]
    [Google Scholar]
  19. Wu Y-H, Yu P-S, Zhou Y-D, Xu L, Wang C-S et al. Muricauda antarctica sp. nov., a marine member of the Flavobacteriaceae isolated from Antarctic seawater. Int J Syst Evol Microbiol 2013; 63:3451–3456 [View Article][PubMed]
    [Google Scholar]
  20. Kim JM, Jin HM, Jeon CO. Muricauda taeanensis sp. nov., isolated from a marine tidal flat. Int J Syst Evol Microbiol 2013; 63:2672–2677 [View Article][PubMed]
    [Google Scholar]
  21. Yang C, Li Y, Guo Q, Lai Q, Wei J et al. Muricauda zhangzhouensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2013; 63:2320–2325 [View Article][PubMed]
    [Google Scholar]
  22. Lee SY, Park S, Oh T-K, Yoon J-H. Muricauda beolgyonensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2012; 62:1134–1139 [View Article][PubMed]
    [Google Scholar]
  23. Arun AB, Chen WM, Lai WA, Chao JH, Rekha PD et al. Muricauda lutaonensis sp. nov., a moderate thermophile isolated from a coastal hot spring. Int J Syst Evol Microbiol 2009; 59:2738–2742 [View Article][PubMed]
    [Google Scholar]
  24. Guo LL, Wu D, Sun C, Cheng H, Xu X-W et al. Muricauda maritima sp. nov., Muricauda aequoris sp. nov. and Muricauda oceanensis sp. nov., three marine bacteria isolated from seawater. Int J Syst Evol Microbiol 2020; 70:6240–6250 [View Article][PubMed]
    [Google Scholar]
  25. Garcia-Lopez M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 Type-Strain genomes improves taxonomic classification of Bacteroidetes . Front Microbiol 2019; 10:10 [View Article][PubMed]
    [Google Scholar]
  26. Zhang Y, Gao Y, Pei J, Cao J, Xie Z et al. Muricauda hadalis sp. nov., a novel piezophile isolated from hadopelagic water of the Mariana Trench and reclassification of Muricauda antarctica as a later heterotypic synonym of Muricauda teanensis . Int J Syst Evol Microbiol 2020; 70:4315–4320 [View Article][PubMed]
    [Google Scholar]
  27. Dong B, Zhu S, Chen T, Ren N, Chen X et al. Muricauda oceani sp. nov., isolated from the East Pacific Ocean. Int J Syst Evol Microbiol 2020; 70:3839–3844 [View Article][PubMed]
    [Google Scholar]
  28. Kim D, Yoo Y, Khim JS, Yang D, Pathiraja D et al. Muricauda ochracea sp. nov., isolated from a tidal flat in the Republic of Korea. Int J Syst Evol Microbiol 2020; 70:4555–4561 [View Article][PubMed]
    [Google Scholar]
  29. Bae SS, Kwon KK, Yang SH, Lee HS, Kim SJ et al. Flagellimonas eckloniae gen. nov., sp. nov., a mesophilic marine bacterium of the family Flavobacteriaceae, isolated from the rhizosphere of Ecklonia kurome. Int J Syst Evol Microbiol 2007; 57:1050–1054 [View Article][PubMed]
    [Google Scholar]
  30. Yoon BJ, Oh D-C. Spongiibacterium flavum gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from the marine sponge Halichondria oshoro, and emended descriptions of the genera Croceitalea and Flagellimonas . Int J Syst Evol Microbiol 2012; 62:1158–1164 [View Article][PubMed]
    [Google Scholar]
  31. Guillard RRL, Hargraves PE. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 1993; 32:234–236 [View Article]
    [Google Scholar]
  32. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31:575–580 [View Article][PubMed]
    [Google Scholar]
  33. Gerhardt P, Murry R, Wood W, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  34. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  35. Yoon SH, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  36. Kumar S, Stecher G, Tamura K. mega7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  37. Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2017; 2:1533–1542 [View Article][PubMed]
    [Google Scholar]
  38. Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article][PubMed]
    [Google Scholar]
  39. Nurk S, Bankevich A, Antipov D, Gurevich AA. Assembling Genomes and Mini-Metagenomes from Highly Chimeric Reads Berlin, Heidelberg: Springer Berlin Heidelberg; 2013
    [Google Scholar]
  40. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  41. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  42. Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG et al. Ecology of marine Bacteroidetes: a comparative genomics approach. Isme J 2013; 7:1026–1037 [View Article][PubMed]
    [Google Scholar]
  43. Grondin JM, Tamura K, Déjean G, Abbott DW, Brumer H. Polysaccharide utilization loci: Fueling microbial communities. J Bacteriol 2017; 199:e00860–16 [View Article][PubMed]
    [Google Scholar]
  44. Gomori G. Preparation of buffers for use in enzyme studies. Methods enzymol 1955; 1:138–146
    [Google Scholar]
  45. Lai Q, Liu Y, Shao Z. Bacillus xiamenensis sp. nov., isolated from intestinal tract contents of a flathead mullet (Mugil cephalus). Antonie van Leeuwenhoek 2014; 105:99–107 [View Article][PubMed]
    [Google Scholar]
  46. Bhosale P, Larson AJ, Bernstein PS. Factorial analysis of tricarboxylic acid cycle intermediates for optimization of zeaxanthin production from Flavobacterium multivorum . J Appl Microbiol 2004; 96:623–629 [View Article][PubMed]
    [Google Scholar]
  47. Park SK, Kim MS, Jung MJ, Nam YD, Park EJ et al. Brachybacterium squillarum sp. nov., isolated from salt-fermented seafood. Int J Syst Evol Microbiol 2011; 61:1118–1122 [View Article][PubMed]
    [Google Scholar]
  48. Nedashkovskaya OI, Kim SB, Han SK, Rhee MS, Lysenko AM et al. Ulvibacter litoralis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from the green alga Ulva fenestrata . Int J Syst Evol Microbiol 2004; 54:119–123 [View Article][PubMed]
    [Google Scholar]
  49. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  50. Kates M. Radioisotopic techniques in lipidology. In Work TS, Work E. (editors) Laboratory Techniques in Biochemistry and Molecular Biology 3 Elsevier; 1986 pp 470–501
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004764
Loading
/content/journal/ijsem/10.1099/ijsem.0.004764
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error