1887

Abstract

Three Gram-stain-negative, strictly aerobic, non-motile and rod-shaped bacterial strains, designated as HME9299, HMF7410 and HMF7856, were isolated from freshwater and tree bark collected in Yong-in, Republic of Korea. Strains HME9299, HMF7410 and HMF7856 exhibited the highest 16S rRNA gene sequence similarities of 97.2, 94.4 and 96.4 % to Jip 10, CCM 8645 and PP-F2F-G21, respectively. Among themselves, the values were 94.1–95.7 %. Phylogenetic analysis of the 16S rRNA gene sequences of the three isolates revealed that they belonged to the genus within the family . The predominant fatty acids of three strains were summed feature 3 (comprising C 7 and/or C 6) and iso-C. Strain HME9299 contained a relatively large amount of C 5. The predominant respiratory quinone was menaquinone-7. The genome sizes of strains HME9299, HMF7410 and HMF7856 were 4.33, 4.16 and 3.68 Mbp, respectively, and their DNA G+C contents were 41.6, 38.4 and 43.9 mol%, respectively. Based on the results of the phenotypic, genotypic, chemotaxonomic and phylogenetic investigation, three novel species, sp. nov, sp. nov. and sp. nov., are proposed. The type strains are HME9299 (=KCTC 42122=DSM 29146), HMF7410 (=KCTC 62464=NBRC 113227) and HMF7856 (=KCTC 72782=NBRC 114275), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004755
2021-03-16
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004755.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004755&mimeType=html&fmt=ahah

References

  1. Pankratov TA, Tindall BJ, Liesack W, Dedysh SN. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 2007; 57:2349–2354 [View Article][PubMed]
    [Google Scholar]
  2. Urai M, Aizawa T, Nakagawa Y, Nakajima M, Sunairi M. Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int J Syst Evol Microbiol 2008; 58:2046–2050 [View Article][PubMed]
    [Google Scholar]
  3. Baik KS, Park SC, Kim EM, Lim CH, Seong CN. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter . Int J Syst Evol Microbiol 2010; 60:134–139 [View Article][PubMed]
    [Google Scholar]
  4. Chen XY, Zhao R, Tian Y, Kong BH, Li XD et al. Mucilaginibacter polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Mucilaginibacter . Int J Syst Evol Microbiol 2014; 64:1395–1400 [View Article][PubMed]
    [Google Scholar]
  5. Yan Y-Q, Hao Y-X, He R-H, Du Z-J. Mucilaginibacter gilvus sp. nov., isolated from Antarctic soil. Int J Syst Evol Microbiol 2019; 69:3885–3890 [View Article][PubMed]
    [Google Scholar]
  6. Zhou Z, Dong Y, Xia X, Wu S, Huang Y et al. Mucilaginibacter terrenus sp. nov., isolated from manganese mine soil. Int J Syst Evol Microbiol 2019; 69:3074–3079 [View Article][PubMed]
    [Google Scholar]
  7. Kim D-U, Lee H, Kim H, Kim S-G, Park SY et al. Mucilaginibacter carri sp. nov., isolated from a car air conditioning system. Int J Syst Evol Microbiol 2016; 66:1754–1759 [View Article][PubMed]
    [Google Scholar]
  8. Yoon J-H, Kang S-J, Park S, Oh T-K. Mucilaginibacter litoreus sp. nov., isolated from marine sand. Int J Syst Evol Microbiol 2012; 62:2822–2827 [View Article][PubMed]
    [Google Scholar]
  9. Kang C-H, Jung Y-T, Yoon J-H. Mucilaginibacter sabulilitoris sp. nov., isolated from marine sand in a firth. Int J Syst Evol Microbiol 2013; 63:2865–2871 [View Article][PubMed]
    [Google Scholar]
  10. Sedláček I, Pantůček R, Králová S, Mašlaňová I, Holochová P et al. Mucilaginibacter terrae sp. nov., isolated from Antarctic soil. Int J Syst Evol Microbiol 2017; 67:4002–4007 [View Article][PubMed]
    [Google Scholar]
  11. Jiang F, Dai J, Wang Y, Xue X, Xu M et al. Mucilaginibacter soli sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 2012; 62:1630–1635 [View Article][PubMed]
    [Google Scholar]
  12. Zheng R, Zhao Y, Wang L, Chang X, Zhang Y et al. Mucilaginibacter antarcticus sp. nov., isolated from tundra soil. Int J Syst Evol Microbiol 2016; 66:5140–5144 [View Article][PubMed]
    [Google Scholar]
  13. Kämpfer P, Busse H-J, McInroy JA, Glaeser SP. Mucilaginibacter auburnensis sp. nov., isolated from a plant stem. Int J Syst Evol Microbiol 2014; 64:1736–1742 [View Article][PubMed]
    [Google Scholar]
  14. Han S-I, Lee H-J, Lee H-R, Kim K-K, Whang K-S. Mucilaginibacter polysacchareus sp. nov., an exopolysaccharide-producing bacterial species isolated from the rhizoplane of the herb Angelica sinensis . Int J Syst Evol Microbiol 2012; 62:632–637 [View Article][PubMed]
    [Google Scholar]
  15. An D-S, Yin C-R, Lee S-T, Cho C-H. Mucilaginibacter daejeonensis sp. nov., isolated from dried rice straw. Int J Syst Evol Microbiol 2009; 59:1122–1125 [View Article][PubMed]
    [Google Scholar]
  16. Aydogan EL, Busse H-J, Moser G, Müller C, Kämpfer P et al. Proposal of Mucilaginibacter galii sp. nov. isolated from leaves of Galium album . Int J Syst Evol Microbiol 2017; 67:1318–1326 [View Article][PubMed]
    [Google Scholar]
  17. Khan H, Chung EJ, Jeon CO, Chung YR. Mucilaginibacter gynuensis sp. nov., isolated from rotten wood. Int J Syst Evol Microbiol 2013; 63:3225–3231 [View Article][PubMed]
    [Google Scholar]
  18. Khan H, Chung EJ, Kang DY, Jeon CO, Chung YR. Mucilaginibacter jinjuensis sp. nov., with xylan-degrading activity. Int J Syst Evol Microbiol 2013; 63:1267–1272 [View Article][PubMed]
    [Google Scholar]
  19. Aydogan EL, Busse H-J, Moser G, Müller C, Kämpfer P et al. Proposal of Mucilaginibacter phyllosphaerae sp. nov. isolated from the phyllosphere of Galium album . Int J Syst Evol Microbiol 2016; 66:4138–4147 [View Article][PubMed]
    [Google Scholar]
  20. Paiva G, Abreu P, Proença DN, Santos S, Nobre MF et al. Mucilaginibacter pineti sp. nov., isolated from Pinus pinaster wood from a mixed grove of pines trees. Int J Syst Evol Microbiol 2014; 64:2223–2228 [View Article][PubMed]
    [Google Scholar]
  21. Madhaiyan M, Poonguzhali S, Lee J-S, Senthilkumar M, Lee KC et al. Mucilaginibacter gossypii sp. nov. and Mucilaginibacter gossypiicola sp. nov., plant-growth-promoting bacteria isolated from cotton rhizosphere soils. Int J Syst Evol Microbiol 2010; 60:2451–2457 [View Article][PubMed]
    [Google Scholar]
  22. Fan D, Subramanian S, Smith DL. Plant endophytes promote growth and alleviate salt stress in Arabidopsis thaliana . Sci Rep 2020; 10:12740 [View Article][PubMed]
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  24. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  27. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  29. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article][PubMed]
    [Google Scholar]
  30. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  31. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article][PubMed]
    [Google Scholar]
  32. Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 2012; 40:D115–D122 [View Article][PubMed]
    [Google Scholar]
  33. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  34. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  35. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  36. Bortniak VL, Pelletier DA, Newman JD. Chryseobacterium populi sp. nov., isolated from Populus deltoides endosphere. Int J Syst Evol Microbiol 2019; 69:356–362 [View Article][PubMed]
    [Google Scholar]
  37. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article][PubMed]
    [Google Scholar]
  38. Rodríguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species: culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species. Microbe Magazine 2014111–118
    [Google Scholar]
  39. Brown AE. Benson’s Microbiological Application Laboratory Manual in General Microbiology, 10th ed. New York: McGraw-Hill; 2007
    [Google Scholar]
  40. Alexander SK, Strete D. Microbiology: A Photographic Atlas for the Laboratory Benjamin Cummings; 2001
    [Google Scholar]
  41. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070
    [Google Scholar]
  42. CLSI Performance standards for antimicrobial disk susceptibility testing: approved standard. , CLSI document M02-A11. 11th ed. PA: Clinical and Laboratory Standards Institute; 2012
  43. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  44. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  45. Collins MD. Analysis of isoprenoid quinones. In Gottschalk G. editor Methods in Microbiology 18 New York: Acad. Press; 1985 pp 329–366
    [Google Scholar]
  46. Hwang YM, Baik KS, Seong CN. Mucilaginibacter defluvii sp. nov., isolated from a dye wastewater treatment facility. Int J Syst Evol Microbiol 2014; 64:565–571 [View Article][PubMed]
    [Google Scholar]
  47. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum and C. vrystaatense . Syst Appl Microbiol 2014; 37:342–350 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004755
Loading
/content/journal/ijsem/10.1099/ijsem.0.004755
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error