1887

Abstract

Between 2014 and 2016, 16 Gram-stain-negative, aerobic, rod-shaped and yellow-orange pigmented bacteria were isolated from exposed soils from the Utsteinen region, Sør Rondane Mountains, East Antarctica. Analysis of their 16S rRNA gene sequences revealed that the strains form a separate cluster in the genus , with KCTC 12531 as its closest neighbour (97.8 % sequence similarity). Comparative genome analysis of two representative strains (i.e. R-68523 and R-68079) of the new group with the type strains of (its closest neighbour) and (type species of the genus), yielded average nucleotide identity values of 73.9–78.7 %. Digital DNA–DNA reassociation values of the two strains and these type strains ranged from 20.3 to 22.0 %. The predominant cellular fatty acids of the two novel strains were summed feature 3 (i.e. C 7 and/or iso-C 2-OH), C 5, C and iso-C. The new strains grew with 0–0.5 % (w/v) NaCl, at pH 6.5–8.0 and displayed optimum growth between 15 and 25 °C. Based on the results of phenotypic, genomic, phylogenetic and chemotaxonomic analyses, the new strains represent a novel species of the genus for which the name sp. nov. is proposed. The type strain is R-68523 (=LMG 31447=CECT 9925).

Keyword(s): Antarctica , ice-free soil and Spirosoma
Funding
This study was supported by the:
  • Belgian Federal Science Policy Office (BE) (Award SD/BA/01)
    • Principle Award Recipient: AnneWillems
  • EMBRC Belgium (Award FWO project GOH3817N)
    • Principle Award Recipient: AnneWillems
  • Special Research Fund at Ghent University (Award BOF-UGent project 01G01911)
    • Principle Award Recipient: AnneWillems
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004754
2021-03-17
2022-05-27
Loading full text...

Full text loading...

References

  1. Migula W. Über ein neues System der Bakterien. In Klein L, Migula W. (editors) Arbeiten aus dem bakteriologischen Institut der technischen Hochschule zu Karlsruhe Nemnich; 1894 pp 235–238
    [Google Scholar]
  2. Ambika Manirajan B, Suarez C, Ratering S, Rusch V, Geissler-Plaum R et al. Spirosoma pollinicola sp. nov., isolated from pollen of common hazel (Corylus avellana L.). Int J Syst Evol Microbiol 2018; 68:3248–3254 [View Article][PubMed]
    [Google Scholar]
  3. Baik KS, Kim MS, Park SC, Lee DW, Lee SD et al. Spirosoma rigui sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2007; 57:2870–2873 [View Article][PubMed]
    [Google Scholar]
  4. Chang X, Jiang F, Wang T, Kan W, Qu Z et al. Spirosoma arcticum sp. nov., isolated from high Arctic glacial till. Int J Syst Evol Microbiol 2014; 64:2233–2237 [View Article][PubMed]
    [Google Scholar]
  5. Li W, Ten LN, Lee S-Y, Kang I-K, Jung H-Y. Spirosoma horti sp. nov., isolated from apple orchard soil. Int J Syst Evol Microbiol 2018; 68:930–935 [View Article][PubMed]
    [Google Scholar]
  6. Rojas J, Ambika Manirajan B, Ratering S, Suarez C, Geissler-Plaum R et al. Spirosoma endbachense sp. nov., isolated from a natural salt meadow. Int J Syst Evol Microbiol 2021; 71: 10 12 2020 [View Article][PubMed]
    [Google Scholar]
  7. Kong HH, Oh J, Deming C, Conlan S, Grice EA et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 2012; 22:850–859 [View Article][PubMed]
    [Google Scholar]
  8. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 2009; 106:16428–16433 [View Article][PubMed]
    [Google Scholar]
  9. Chen I-MA, Markowitz VM, Chu K, Palaniappan K, Szeto E et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res 2017; 45:D507–D516 [View Article][PubMed]
    [Google Scholar]
  10. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ et al. Genbank. Nucleic Acids Res 2013; 41:D36–D42 [View Article][PubMed]
    [Google Scholar]
  11. Ahn J-H, Weon H-Y, Kim S-J, Hong S-B, Seok S-J et al. Spirosoma oryzae sp. nov., isolated from rice soil and emended description of the genus Spirosoma . Int J Syst Evol Microbiol 2014; 64:3230–3234 [View Article][PubMed]
    [Google Scholar]
  12. Finster KW, Herbert RA, Lomstein BA. Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma . Int J Syst Evol Microbiol 2009; 59:839–844 [View Article][PubMed]
    [Google Scholar]
  13. Fries J, Pfeiffer S, Kuffner M, Sessitsch A. Spirosoma endophyticum sp. nov., isolated from Zn- and Cd-accumulating Salix caprea. Int J Syst Evol Microbiol 2013; 63:4586–4590 [View Article][PubMed]
    [Google Scholar]
  14. Hatayama K, Kuno T. Spirosoma fluviale sp. nov., isolated from river water. Int J Syst Evol Microbiol 2015; 65:3447–3450 [View Article][PubMed]
    [Google Scholar]
  15. Joo ES, Kim EB, Jeon SH, Srinivasan S, Kim MK. Spirosoma swuense sp. nov., isolated from wet soil. Int J Syst Evol Microbiol 2017; 67:532–536 [View Article][PubMed]
    [Google Scholar]
  16. Kim D-U, Lee H, Kim S-G, Ahn J-H, Yoon Park S et al. Spirosoma aerolatum sp. nov., isolated from a motor car air conditioning system. Int J Syst Evol Microbiol 2015; 65:4003–4007 [View Article][PubMed]
    [Google Scholar]
  17. Kim D-U, Lee H, Lee S, Park S, Yoon J-H et al. Spirosoma metallilatum sp. nov., isolated from an automotive air conditioning system. Int J Syst Evol Microbiol 2018; 68:523–528 [View Article][PubMed]
    [Google Scholar]
  18. Kim D-U, Lee H, Lee S, Park S, Yoon J-H et al. Spirosoma carri sp. nov., isolated from an automobile air conditioning system. Int J Syst Evol Microbiol 2017; 67:4195–4199 [View Article][PubMed]
    [Google Scholar]
  19. Kim S-J, Ahn J-H, Weon H-Y, Hong S-B, Seok S-J et al. Spirosoma aerophilum sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2016; 66:2342–2346 [View Article][PubMed]
    [Google Scholar]
  20. Lee J-J, Lee Y-H, Park S-J, Lee S-Y, Kim B-O et al. Spirosoma knui sp. nov., a radiation-resistant bacterium isolated from the Han River. Int J Syst Evol Microbiol 2017; 67:1359–1365 [View Article][PubMed]
    [Google Scholar]
  21. Li Y, Ai M-J, Sun Y, Zhang Y-Q, Zhang J-Q. Spirosoma lacussanchae sp. nov., a phosphate-solubilizing bacterium isolated from a freshwater reservoir. Int J Syst Evol Microbiol 2017; 67:3144–3149 [View Article][PubMed]
    [Google Scholar]
  22. Okiria J, Ten LN, Lee J-J, Lee S-Y, Cho Y-J et al. Spirosoma litoris sp. nov., a bacterium isolated from beach soil. Int J Syst Evol Microbiol 2017; 67:4986–4991 [View Article][PubMed]
    [Google Scholar]
  23. Ten LN, Okiria J, Lee J-J, Lee S-Y, Kang I-K et al. Spirosoma koreense sp. nov., a species of the family Cytophagaceae isolated from beach soil. Int J Syst Evol Microbiol 2017; 67:5198–5204 [View Article][PubMed]
    [Google Scholar]
  24. Ten LN, Xu J-L, Jin F-X, Im W-T, Oh H-M et al. Spirosoma panaciterrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009; 59:331–335 [View Article][PubMed]
    [Google Scholar]
  25. Yang SS, Tang K, Zhang X, Wang J, Wang X et al. Spirosoma soli sp. nov., isolated from biological soil crusts. Int J Syst Evol Microbiol 2016; 66:5568–5574 [View Article][PubMed]
    [Google Scholar]
  26. Zou R, Zhang Y, Zhou X, Wang Y, Peng F. Spirosoma flavum sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 2017; 67:4911–4916 [View Article][PubMed]
    [Google Scholar]
  27. Larkin J, Borrall R. Family I. Spirosomaceae Larkin and Borrall 1978, 595AL . In Krieg N, JG H. (editors) Bergey’s Manual of Systematic Bacteriology Baltimore: MD: Williams & Wilkins; 1984 pp 125–132
    [Google Scholar]
  28. Li W, Lee S-Y, Kang I-K, Ten LN, Jung H-Y. Spirosoma agri sp. nov., isolated from apple orchard soil. Curr Microbiol 2018; 75:694–700 [View Article][PubMed]
    [Google Scholar]
  29. Elderiny N, Ten LN, Lee J-J, Lee S-Y, Park S et al. Spirosoma daeguensis sp. nov., isolated from beach soil. J Microbiol 2017; 55:678–683 [View Article][PubMed]
    [Google Scholar]
  30. Lee J-J, Lee YH, Park SJ, Lim S, Jeong S-W et al. Spirosoma fluminis sp. nov., a Gamma-Radiation Resistant Bacterium Isolated from Sediment of the Han River in South Korea. Curr Microbiol 2016; 73:689–695 [View Article][PubMed]
    [Google Scholar]
  31. Lee J-J, Elderiny N, Lee S-Y, Lee DS, Kim MK et al. Spirosoma gilvum sp. nov., isolated from beach soil. Curr Microbiol 2017; 74:1425–1431 [View Article][PubMed]
    [Google Scholar]
  32. Ten LN, Elderiny N, Lee J-J, Lee S-Y, Park S et al. Spirosoma harenae sp. nov., a Bacterium Isolated from a Sandy Beach. Curr Microbiol 2018; 75:179–185 [View Article][PubMed]
    [Google Scholar]
  33. Weilan L, Lee J-J, Lee S-Y, Park S, Ten LN et al. Spirosoma humi sp. nov., isolated from soil in South Korea. Curr Microbiol 2018; 75:328–335 [View Article][PubMed]
    [Google Scholar]
  34. Li W, Lee S-Y, Park S, Kim B-O, Ten LN et al. Spirosoma lituiforme sp. nov., isolated from soil. J Microbiol 2017; 55:856–861 [View Article][PubMed]
    [Google Scholar]
  35. Lee J-J, Park S-J, Lee Y-H, Lee S-Y, Park S et al. Spirosoma luteolum sp. nov. isolated from water. J Microbiol 2017; 55:247–252 [View Article][PubMed]
    [Google Scholar]
  36. Lee H, Kim D-U, Lee S, Park S, Yoon J-H et al. Spirosoma metallicus sp. nov., isolated from an automobile air conditioning system. J Microbiol 2017; 55:673–677 [View Article][PubMed]
    [Google Scholar]
  37. Okiria J, Ten LN, Park S-J, Lee S-Y, Lee DH et al. Spirosoma migulaei sp. nov., isolated from soil. J Microbiol 2017; 55:927–932 [View Article][PubMed]
    [Google Scholar]
  38. Lee J-J, Kang M-S, Joo ES, Kim MK, Im W-T et al. Spirosoma montaniterrae sp. nov., an ultraviolet and gamma radiation-resistant bacterium isolated from mountain soil. J Microbiol 2015; 53:429–434 [View Article][PubMed]
    [Google Scholar]
  39. Li W, Lee S-Y, Kang I-K, Ten LN, Jung H-Y. Spirosoma pomorum sp. nov., isolated from apple orchard soil. J Microbiol 2018; 56:90–96 [View Article][PubMed]
    [Google Scholar]
  40. Lee J-J, Srinivasan S, Lim S, Joe M, Im S et al. Spirosoma radiotolerans sp. nov., a gamma-radiation-resistant bacterium isolated from gamma ray-irradiated soil. Curr Microbiol 2014; 69:286–291 [View Article][PubMed]
    [Google Scholar]
  41. Ten LN, Okiria J, Lee J-J, Lee S-Y, Park S et al. Spirosoma terrae sp. nov., isolated from soil from Jeju Island, Korea. Curr Microbiol 2018; 75:492–498 [View Article][PubMed]
    [Google Scholar]
  42. Li W, Ten LN, Lee S-Y, Lee DH, Jung H-Y. Spirosoma jeollabukense sp. nov., isolated from soil. Arch Microbiol 2018; 200:431–438 [View Article][PubMed]
    [Google Scholar]
  43. Joo ES, Lee J-J, Cha S, Jheong W, Seo T et al. Spirosoma pulveris sp. nov., a bacterium isolated from a dust sample collected at Chungnam province, South Korea. J Microbiol 2015; 53:750–755 [View Article][PubMed]
    [Google Scholar]
  44. Kang H, Cha I, Kim H, Joh K. Spirosoma telluris sp. nov. and Spirosoma arboris sp. nov. isolated from soil and tree bark, respectively. Int J Syst Evol Microbiol 2020; 70:5355–5362 [View Article]
    [Google Scholar]
  45. Tahon G, Willems A. Isolation and characterization of aerobic anoxygenic phototrophs from exposed soils from the Sør Rondane Mountains, East Antarctica. Syst Appl Microbiol 2017; 40:357–369 [View Article][PubMed]
    [Google Scholar]
  46. Peeters K, Ertz D, Willems A. Culturable bacterial diversity at the Princess Elisabeth station (Utsteinen, Sør Rondane Mountains, East Antarctica) harbours many new taxa. Syst Appl Microbiol 2011; 34:360–367 [View Article][PubMed]
    [Google Scholar]
  47. Niemann S, Pühler A, Tichy HV, Simon R, Selbitschka W. Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. J Appl Microbiol 1997; 82:477–484 [View Article][PubMed]
    [Google Scholar]
  48. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  49. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  50. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  51. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article][PubMed]
    [Google Scholar]
  52. Dumolin C, Aerts M, Verheyde B, Schellaert S, Vandamme T et al. Introducing SPeDE: high-throughput Dereplication and accurate determination of microbial diversity from matrix-assisted laser desorption-ionization time of flight mass spectrometry data. mSystems 2019; 4:e00437–00419 [View Article][PubMed]
    [Google Scholar]
  53. Tahon G, Tytgat B, Lebbe L, Carlier A, Willems A. Abditibacterium utsteinense sp. nov., the first cultivated member of candidate phylum FBP, isolated from ice-free Antarctic soil samples. Syst Appl Microbiol 2018; 41:279–290 [View Article][PubMed]
    [Google Scholar]
  54. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article][PubMed]
    [Google Scholar]
  55. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
  56. Markowitz VM, Mavromatis K, Ivanova NN, Chen I-MA, Chu K et al. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009; 25:2271–2278 [View Article][PubMed]
    [Google Scholar]
  57. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  58. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  59. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article][PubMed]
    [Google Scholar]
  60. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 2018; 46:W246–W251 [View Article][PubMed]
    [Google Scholar]
  61. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article][PubMed]
    [Google Scholar]
  62. Rawlings ND, Waller M, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 2014; 42:D503–D509 [View Article][PubMed]
    [Google Scholar]
  63. Elbourne LDH, Tetu SG, Hassan KA, Paulsen IT. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res 2017; 45:D320–D324 [View Article][PubMed]
    [Google Scholar]
  64. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  65. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O. Report of the AD hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464
    [Google Scholar]
  66. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  67. Jovel J, Patterson J, Wang W, Hotte N, O'Keefe S et al. Characterization of the gut microbiome using 16S or shotgun Metagenomics. Front Microbiol 2016; 7:459 [View Article][PubMed]
    [Google Scholar]
  68. Ankenbrand MJ, Keller A. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome 2016; 59:783–791 [View Article][PubMed]
    [Google Scholar]
  69. Santos-Beneit F. The PHO regulon: a huge regulatory network in bacteria. Front Microbiol 2015; 6:402 [View Article][PubMed]
    [Google Scholar]
  70. Martín JF, Rodríguez-García A, Liras P. The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in Streptomyces coelicolor and Streptomyces avermitilis. J Antibiot 2017; 70:534 [View Article][PubMed]
    [Google Scholar]
  71. Hulett FM. The pho regulon. Bacillus subtilis and Its Closest Relatives American Society of Microbiology; 2002
    [Google Scholar]
  72. Bjursell MK, Martens EC, Gordon JI. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem 2006; 281:36269–36279 [View Article][PubMed]
    [Google Scholar]
  73. Grondin JM, Tamura K, Déjean G, Abbott DW, Brumer H. Polysaccharide utilization loci: Fueling microbial communities. J Bacteriol 2017; 199:e00860–00816 [View Article][PubMed]
    [Google Scholar]
  74. Kappelmann L, Krüger K, Hehemann J-H, Harder J, Markert S et al. Polysaccharide utilization loci of North sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. Isme J 2019; 13:76–91 [View Article][PubMed]
    [Google Scholar]
  75. Cregut M, Piutti S, Slezack-Deschaumes S, Benizri E. Compartmentalization and regulation of arylsulfatase activities in Streptomyces sp., Microbacterium sp. and Rhodococcus sp. soil isolates in response to inorganic sulfate limitation. Microbiol Res 2013; 168:12–21 [View Article][PubMed]
    [Google Scholar]
  76. Helbert W. Marine polysaccharide sulfatases. Front Mar Sci 2017; 4: [View Article]
    [Google Scholar]
  77. Nguyen TTH, Myrold DD, Mueller RS. Distributions of extracellular peptidases across prokaryotic genomes reflect phylogeny and habitat. Front Microbiol 2019; 10:413 [View Article][PubMed]
    [Google Scholar]
  78. Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG et al. Ecology of marine Bacteroidetes: a comparative genomics approach. Isme J 2013; 7:1026–1037 [View Article][PubMed]
    [Google Scholar]
  79. Armon R. Soil bacteria and bacteriophages. In Witzany G. editor Biocommunication in Soil Microorganisms Berlin, Heidelberg: Springer Berlin Heidelberg; 2011 pp 67–112
    [Google Scholar]
  80. Marraffini LA, Sontheimer EJ. Crispr interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 2010; 11:181–190 [View Article][PubMed]
    [Google Scholar]
  81. Mergaert J, Verdonck L, Kersters K. Transfer of Erwinia ananas (synonym, Erwinia uredovora) and Erwinia stewartii to the genus Pantoea emend. as Pantoea ananas (Serrano 1928) comb. nov. and Pantoea stewartii (Smith 1898) comb. nov., respectively, and description of Pantoea stewartii subsp. indologenes subsp. nov. Int J Syst Evol Microbiol 1993; 43:162–173
    [Google Scholar]
  82. Srinivasan S, Joo ES, Lee J-J, Kim MK. Hymenobacter humi sp. nov., a bacterium isolated from soil. Antonie van Leeuwenhoek 2015; 107:1411–1419 [View Article][PubMed]
    [Google Scholar]
  83. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91
    [Google Scholar]
  84. Asker D, Beppu T, Ueda K. Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan. Appl Microbiol Biotechnol 2007; 77:383–392 [View Article][PubMed]
    [Google Scholar]
  85. Schweiggert RM, Carle R. Carotenoid production by bacteria, microalgae, and fungi. In Kaczor A, Baranska M. (editors) Carotenoids 2016 pp 217–240
    [Google Scholar]
  86. Jeffrey SW. Lutein standard sprectrum in reference solvents. https://epic.awi.de/id/eprint/28847/1/Jef1997ac.pdf [accessed 10 October 2019]; 1997
  87. MacFaddin JF. Biochemical Tests for Identification of Medical Bacteria, 2nd ed. Baltimore (Md): Williams & Wilkins Co; 1980
    [Google Scholar]
  88. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  89. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S et al. Ncbi blast: a better web interface. Nucleic Acids Res 2008; 36:W5–W9 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004754
Loading
/content/journal/ijsem/10.1099/ijsem.0.004754
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error