1887

Abstract

A rod-shaped, facultative anaerobic, Gram-stain-positive bacteria, isolated from the cecum of a mini-pig, was designated as strain YH-lac23. Analysis of 16S rRNA gene sequences revealed that the strain was closely related to JCM 33273 (97.9 %), KCTC 21027 (96.2 %) and KCTC 21010 (95.7 %). Analysis of housekeeping gene sequences ( and ) revealed that the strain formed a sub-cluster with . The average nucleotide identity value for YH-lac23 and its most closely related strain () is 80.7 %. The main fatty acids are Cω9 and C. The cell wall contains the peptidoglycan of -diaminopimelic acid. The G+C content of the genomic DNA is 59.8 mol%. In view of the chemotaxonomic, phenotypic and phylogenetic properties, YH-lac23 (=KCTC 25006=JCM 33998) represents a novel taxon. The name sp. nov. is proposed.

Funding
This study was supported by the:
  • Ministry of Science, ICT and Future Planning
    • Principle Award Recipient: YoungHyo Chang
  • Bio & Medical Technology Development Program of National Research Foundation (Award 2016M3A9A5922628)
    • Principle Award Recipient: Ho-YongPark
  • National Research Foundation of Korea (Award 2013M3A9A5076601)
    • Principle Award Recipient: YoungHyo Chang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004752
2021-03-16
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004752.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004752&mimeType=html&fmt=ahah

References

  1. Valeriano VDV, Balolong MP, Kang D-K. Probiotic roles of Lactobacillus sp. in swine: insights from gut microbiota. J Appl Microbiol 2017; 122:554–567 [View Article][PubMed]
    [Google Scholar]
  2. Reddy KE, Jeong JY, Song J, Lee Y, Lee H-J et al. Colon microbiome of pigs fed diet contaminated with commercial purified deoxynivalenol and zearalenone. Toxins 2018; 10:347–15 [View Article][PubMed]
    [Google Scholar]
  3. Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol 2013; 6:39–51 [View Article][PubMed]
    [Google Scholar]
  4. Zhuang Y, Chai J, Cui K, Bi Y, Diao Q et al. Longitudinal investigation of the gut microbiota in goat kids from birth to postweaning. Microorganisms 2020; 8:1111 [View Article][PubMed]
    [Google Scholar]
  5. Mokoena MP. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 2017; 22:1255 [View Article]
    [Google Scholar]
  6. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae . Int J Syst Evol Microbiol 2020; 70:2782–2858 [View Article]
    [Google Scholar]
  7. Bianchi F, Rossi EA, Sakamoto IK, Adorno MAT, Van de Wiele T et al. Beneficial effects of fermented vegetal beverages on human gastrointestinal microbial ecosystem in a simulator. Food Research International 2014; 64:43–52 [View Article]
    [Google Scholar]
  8. Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K et al. Health benefits of probiotics: a review. ISRN Nutrition 2013; 2013:1–7 [View Article]
    [Google Scholar]
  9. Huang J, Zhang W, Hu Z, Liu Z, Du T et al. Isolation, characterization and selection of potential probiotic lactic acid bacteria from feces of wild boar, native pig and commercial pig. Livest Sci 2020; 237:104036 [View Article]
    [Google Scholar]
  10. Paek J, Shin Y, Kim J-S, Kim H, Kook J-K et al. Description of Absiella argi gen. nov., sp. nov., and transfer of Eubacterium dolichum and Eubacterium tortuosum to the genus Absiella as Absiella dolichum comb. nov. and Absiella tortuosum comb. nov. Anaerobe 2017; 48:70–75 [View Article]
    [Google Scholar]
  11. Jung MY, Kim J-S, Paek WK, Styrak I, Park I-S et al. Description of Lysinibacillus sinduriensis sp. nov., and transfer of Bacillus massiliensis and Bacillus odysseyi to the genus Lysinibacillus as Lysinibacillus massiliensis comb. nov. and Lysinibacillus odysseyi comb. nov. with emended description of the genus Lysinibacillus . Int J Syst Evol Microbiol 2012; 62:2347–2355 [View Article]
    [Google Scholar]
  12. Paek J, Shin Y, Kook J-K, Chang Y-H. Blautia argi sp. nov., a new anaerobic bacterium isolated from dog faeces. Int J Syst Evol Microbiol 2019; 69:33–38 [View Article]
    [Google Scholar]
  13. Chang Y-H, Jung MY, Park I-S, Oh H-M. Sporolactobacillus vineae sp. nov., a spore-forming lactic acid bacterium isolated from vineyard soil. Int J Syst Evol Microbiol 2008; 58:2316–2320 [View Article]
    [Google Scholar]
  14. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Evol 1995; 45:240–245
    [Google Scholar]
  15. Felis GE, Dellaglio F, Mizzi L, Torriani S. Comparative sequence analysis of a recA gene fragment brings new evidence for a change in the taxonomy of the Lactobacillus casei group. Int J Syst Evol Microbiol 2001; 51:2113–2117 [View Article]
    [Google Scholar]
  16. Rocha J, Botelho J, Ksiezarek M, Perovic SU, Machado M et al. Lactobacillus mulieris sp. nov., a new species of Lactobacillus delbrueckii group. Int J Syst Evol Microbiol 2020; 70:1522–1527 [View Article]
    [Google Scholar]
  17. Kimura M. The Neutral Theory of Molecular Evolution NY: Cambridge: Cambridge University; 1983
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  19. Jeon Y-S, Chung H, Park S, Hur I, Lee J-H et al. jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 2005; 21:3171–3173 [View Article]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  22. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  24. Modesto M, Satti M, Watanabe K, Sciavilla P, Felis GE et al. Alloscardovia theropitheci sp. nov., isolated from the faeces of gelada baboon, the ‘bleeding heart’ monkey (Theropithecus gelada). Int J Syst Evol Microbiol 2019; 69:3041–3048 [View Article]
    [Google Scholar]
  25. Shin Y, Paek J, Kim H, Kook J-K, Kim J-S et al. Absicoccus porci gen. nov., sp. nov., a member of the family Erysipelotrichaceae isolated from pig faeces. Int J Syst Evol Microbiol 2020; 70:732–737 [View Article]
    [Google Scholar]
  26. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article]
    [Google Scholar]
  27. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  28. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  29. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: Midi Inc; 1990
    [Google Scholar]
  30. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007; 57:2777–2789 [View Article]
    [Google Scholar]
  31. Torriani S, Felis GE, Dellaglio F. Differentiation of Lactobacillus plantarum,L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl Environ Microbiol 2001; 67:3450–3454 [View Article]
    [Google Scholar]
  32. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  33. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article]
    [Google Scholar]
  34. Long GY, Wei YX, Tu W, Gu CT. Lactobacillus hegangensis sp. nov., Lactobacillus suibinensis sp. nov., Lactobacillus daqingensis sp. nov., Lactobacillus yichunensis sp. nov., Lactobacillus mulanensis sp. nov., Lactobacillus achengensis sp. nov., Lactobacillus wuchangensis sp. nov., Lactobacillus gannanensis sp. nov., Lactobacillus binensis sp. nov. and Lactobacillus angrenensis sp. nov., isolated from Chinese traditional pickle and yogurt. Int J Syst Evol Microbiol 2020; 70:2467–2484 [View Article]
    [Google Scholar]
  35. Nguyen DTL, Cnockaert M, Van Hoorde K, De Brandt E, Snauwaert I et al. Lactobacillus porcinae sp. nov., isolated from traditional Vietnamese NEM chua. Int J Syst Evol Microbiol 2013; 63:1754–1759 [View Article]
    [Google Scholar]
  36. Morlon‐Guyot J, Guyot J, Pot B. Lactobacillus manihotivorans sp. nov., a new starch‐hydrolyzing lactic acid bacterium isolated from cassava sour starch fermentation. Int J Syst Evol 1998; 48:1101–1109
    [Google Scholar]
  37. Weiss N, Schillinger U, Laternser M, Kandler O. Lactobacillus sharpeae sp.nov. and Lactobacillus agilis sp.nov., two new species of homofermentative, meso-diaminopimelic acid-containing lactobacilli isolated from sewage. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I. Abt. Originale C: Allgemeine, angewandte und ökologische Mikrobiologie 1981; 2:242–253 [View Article]
    [Google Scholar]
  38. Oki K, Kudo Y, Watanabe K. Lactobacillus saniviri sp. nov. and Lactobacillus senioris sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2012; 62:601–607 [View Article][PubMed]
    [Google Scholar]
  39. Long GY, Gu CT. Lactobacillus jixianensis sp. nov., Lactobacillus baoqingensis sp. nov., Lactobacillus jiayinensis sp. nov., Lactobacillus zhaoyuanensis sp. nov., Lactobacillus lindianensis sp. nov., Lactobacillus huananensis sp. nov., Lactobacillus tangyuanensis sp. nov., Lactobacillus fuyuanensis sp. nov., Lactobacillus tongjiangensis sp. nov., Lactobacillus fujinensis sp. nov. and Lactobacillus mulengensis sp. nov., isolated from Chinese traditional pickle. Int J Syst Evol Microbiol 2019; 69:2340–2353 [View Article]
    [Google Scholar]
  40. Gu CT, Li CY, Yang LJ, Huo GC. Lactobacillus mudanjiangensis sp. nov., Lactobacillus songhuajiangensis sp. nov. and Lactobacillus nenjiangensis sp. nov., isolated from Chinese traditional pickle and sourdough. Int J Syst Evol Microbiol 2013; 63:4698–4706 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004752
Loading
/content/journal/ijsem/10.1099/ijsem.0.004752
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error