1887

Abstract

A Gram-stain-positive, non-motile, non-spore-forming, coccus (strain Do 184) was isolated from exhaust air of a turkey fattening plant on mannitol salt agar. The strain shared high 16S rRNA gene sequence similarity to the type strains of (98.0%) followed by (97.2%) and (97.1%). All other 16S rRNA gene sequence similarities to species of the genus were below 97%. The average nucleotide identities (ANI) between the Do 184 genome assembly and the ones of type strains of species of the genus were far below the 95% species delineation cutoff value, ranging from 79.47% ( DSM 19772) to 75.30% ( CIP 107946). The quinone system of Do 184, the polar lipid profile, the polyamine pattern and the fatty acid profile were in congruence with those reported for other species of the genus and thus supported the affiliation of Do 184 to this genus. Do 184 represents a novel species, for which the name sp. nov. is proposed, with the type strain Do 184 (=LMG 31100=CCM 8918=CIP 111649). In addition, data on genome sequences of C1-52 CGMCC 1.8911=NBRC 105788 and MPA-33=CCM 7679=CCUG 57953=DSM 22420=CIP 111750 indicate that both isolates represent the same species. Pairwise ANI between the genomes of these two strains lead to similarities of 98.98–99.05 %. These results indicate that these strains represent members of the same species. Due to priority of publication it is proposed that is reclassified as .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004745
2021-03-16
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004745.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004745&mimeType=html&fmt=ahah

References

  1. Yoon J-H, Lee K-C, Weiss N, Kang KH, Park Y-H. Jeotgalicoccus halotolerans gen. nov., sp. nov. and Jeotgalicoccus psychrophilus sp. nov., isolated from the traditional Korean fermented seafood jeotgal. Int J Syst Evol Microbiol 2003; 53:595–602 [View Article][PubMed]
    [Google Scholar]
  2. Hoyles L, Collins MD, Foster G, Falsen E, Schumann P. Jeotgalicoccus pinnipedialis sp. nov., from a southern elephant seal (Mirounga leonina). Int J Syst Evol Microbiol 2004; 54:745–748 [View Article][PubMed]
    [Google Scholar]
  3. Chen Y-G, Zhang Y-Q, Shi J-X, Xiao H-D, Tang S-K et al. Jeotgalicoccus marinus sp. nov., a marine bacterium isolated from a sea urchin. Int J Syst Evol Microbiol 2009; 59:1625–1629 [View Article][PubMed]
    [Google Scholar]
  4. Guo X-Q, Li R, Zheng L-Q, Lin D-Q, Sun J-Q et al. Jeotgalicoccus huakuii sp. nov., a halotolerant bacterium isolated from seaside soil. Int J Syst Evol Microbiol 2010; 60:1307–1310 [View Article][PubMed]
    [Google Scholar]
  5. Martin E, Klug K, Frischmann A, Busse H-J, Kämpfer P et al. Jeotgalicoccus coquinae sp. nov. and Jeotgalicoccus aerolatus sp. nov., isolated from poultry houses. Int J Syst Evol Microbiol 2011; 61:237–241 [View Article][PubMed]
    [Google Scholar]
  6. Liu W-Y, Jiang L-L, Guo C-J, Yang SS. Jeotgalicoccus halophilus sp. nov., isolated from salt lakes. Int J Syst Evol Microbiol 2011; 61:1720–1724 [View Article][PubMed]
    [Google Scholar]
  7. Liu Z-X, Chen J, Tang S-K, Zhang Y-Q, He J-W et al. Jeotgalicoccus nanhaiensis sp. nov., isolated from intertidal sediment, and emended description of the genus Jeotgalicoccus . Int J Syst Evol Microbiol 2011; 61:2029–2034 [View Article][PubMed]
    [Google Scholar]
  8. Glaeser SP, Kleinhagauer T, Jäckel U, Klug K, Kämpfer P. Jeotgalicoccus schoeneichii sp. nov. isolated from exhaust air of a pig barn. Int J Syst Evol Microbiol 2016; 66:3503–3508 [View Article][PubMed]
    [Google Scholar]
  9. Papadioti A, Azhar EI, Bibi F, Jiman-Fatani A, Aboushoushah SM et al. 'Jeotgalicoccus saudimassiliensis' sp. nov., a new bacterial species isolated from air samples in the urban environment of Makkah, Saudi Arabia. New Microbes New Infect 2017; 15:128–130 [View Article][PubMed]
    [Google Scholar]
  10. Watanabe K, Nagao N, Toda T, Kurosawa N. Changes in bacterial communities accompanied by aggregation in a fed-batch composting reactor. Curr Microbiol 2008; 56:458–467 [View Article]
    [Google Scholar]
  11. Lippmann J, Mietke H. Bioaerosoluntersuchungen aus der Emission einer Putenmastanlage. Teil 1: Mikrobiologische Kennwerte und Emissionsfaktoren. Gefahrstoffe - Reinhaltung der Luft/Air Quality Control 2016; 9:359–364
    [Google Scholar]
  12. Mietke H, Keck S, Jäckel U. Bioaerosoluntersuchungen aus der Emission einer Putenmastanlage. Teil 2: Charakterisierung der bakteriellen Zusammensetzung. Gefahrstoffe - Reinhaltung der Luft/Air Quality Control 2017; 10:451–457
    [Google Scholar]
  13. VDI 4257 Part 2 Bioaerosols and Biological Agents - Emission Measurement - Sampling of Bioaerosols and Separation in Liquids Berlin: Beuth; 2011
    [Google Scholar]
  14. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  15. Lane DJ. 16S/23S rRNA sequencing nucleic acid techniques in bacterial systematics. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Wiley, New York: Wiley; 1991 pp 115–175
    [Google Scholar]
  16. Brosius J, Dull TJ, Sleeter DD, Noller HF. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli . J Mol Biol 1981; 148:107–127 [View Article]
    [Google Scholar]
  17. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  18. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  19. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. Silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2012; 35:7188–7196 [View Article]
    [Google Scholar]
  20. Pruesse E, Peplies J, Glöckner FO, Yarza P, Richter M. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  21. Jukes TH, Cantor CR. Evolution of the protein molecules. In Munro HN. editor Mammalian Protein Metabolism New York: Academic Press; 1969 pp 21–132
    [Google Scholar]
  22. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author Seattle: Department of Genome Sciences, University of Washington; 2005
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  24. Criscuolo A, Brisse S. AlienTrimmer: a tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads. Genomics. ftp://ftp.pasteur.fr/pub/GenSoft/projects/AlienTrimmer/ ; 2013
  25. Liu Y, Schröder J, Schmidt B. Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data. Bioinformatics 2013; 29:308–315 [View Article][PubMed]
    [Google Scholar]
  26. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  27. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  28. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article][PubMed]
    [Google Scholar]
  29. Criscuolo A. A fast alignment-free bioinformatics procedure to infer accurate distance-based phylogenetic trees from genome assemblies. Research Ideas and Outcomes 2019; 5:e36178 [View Article]
    [Google Scholar]
  30. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  31. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Evol Microbiol 1997; 47:698–708 [View Article]
    [Google Scholar]
  32. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  33. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  34. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  35. Stolz A, Busse H-J, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article][PubMed]
    [Google Scholar]
  36. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  37. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.004745
Loading
/content/journal/ijsem/10.1099/ijsem.0.004745
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error