1887

Abstract

The order Himatismenida (Amoebozoa, Discosea) comprises naked amoebae with an organic coat that is located on the dorsal surface of the cell. The phylogenetic relationships among deeply branching genera of the Himatismenida are unclear, as data on the species diversity of the himatismenid genera is largely restricted to the derived genus . Here, we describe two new amoeba species that branch at the base of the order Himatismenida, evidenced by SSU rRNA gene and multigene analyses. Among them, a freshwater species gen. nov., sp. nov. has a dorsal cell coat consisting of flat, oval scales. This species forms a clade at the base of the Himatismenida, and the previously described , its closest relative, is transferred into the new genus as comb. nov. Although the two species are barely distinguishable by their sequence data, they are clearly distinct in morphology. Using this data, we can report the first evidence of a dorsal cell coat consisting of scales outside of the genus . The other species has a marine origin and branches deeply, close to the root of the phylogenetic tree of Himatismenida. Based on the morphology of this amoeba, it should be described as sp. nov., a new species of the genus . Analyses of the phylogenetic relationships and the ultrastructure of the deeply branching himatismenids, together with several of the newly obtained gene sequences of and suggest that some elements of the dorsal cell coat of may be ancestral for Himatismenida and have been partly retained in various more derived species of this clade, in particular, . Although actin and gene data do not resolve the higher-level relationships in Himatismenida, they correspond to the grouping of species within most genera.

Funding
This study was supported by the:
  • Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Award IZLR Z3_128338)
    • Principle Award Recipient: JanPawlowski
  • Российский Фонд Фундаментальных Исследований (РФФИ) (Award 15-04-06239-a)
    • Principle Award Recipient: AlexanderKudryavtsev
  • Russian Science Support Foundation (Award 20-14-00181)
    • Principle Award Recipient: AlexanderKudryavtsev
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004737
2021-03-12
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004737.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004737&mimeType=html&fmt=ahah

References

  1. Bark AW. A study of the genus Cochliopodium Hertwig and Lesser 1874. Protistologica 1973; 9:119–138
    [Google Scholar]
  2. Kudryavtsev A. Microscopic evidence for inclusion of Parvamoeba Rogerson, 1993 into the order Himatismenida (Amoebozoa). Eur J Protistol 2012; 48:85–88 [View Article][PubMed]
    [Google Scholar]
  3. Kudryavtsev A, Wylezich C, Pawlowski J. Ovalopodium desertum n. sp. and the phylogenetic relationships of Cochliopodiidae (Amoebozoa). Protist 2011; 162:571–589 [View Article][PubMed]
    [Google Scholar]
  4. Smirnov AV, Chao E, Nassonova ES, Cavalier-Smith T. A revised classification of naked Lobose amoebae (Amoebozoa: Lobosa). Protist 2011; 162:545–570 [View Article][PubMed]
    [Google Scholar]
  5. Kudryavtsev A, Brown MW, Tice A, Spiegel FW, Pawlowski J et al. A revision of the order Pellitida Smirnov et al., 2011 (Amoebozoa, Discosea) based on ultrastructural and molecular evidence, with description of Endostelium crystalliferum n. sp. Protist 2014; 165:208–229 [View Article][PubMed]
    [Google Scholar]
  6. Cavalier-Smith T, Chao EE, Lewis R. 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution. Mol Phylogenet Evol 2016; 99:275–296 [View Article][PubMed]
    [Google Scholar]
  7. Kang S, Tice AK, Spiegel FW, Silberman JD, Pánek T et al. Between a pod and a hard test: the deep evolution of amoebae. Mol Biol Evol 2017; 34:2258–2270 [View Article]
    [Google Scholar]
  8. Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Euk Microbiol 2019; 66:4–119 [View Article][PubMed]
    [Google Scholar]
  9. Geisen S, Kudryavtsev A, Bonkowski M, Smirnov A. Discrepancy between species borders at morphological and molecular levels in the genus Cochliopodium (Amoebozoa, Himatismenida), with the description of Cochliopodium plurinucleolum n. sp. Protist 2014; 165:364–383 [View Article][PubMed]
    [Google Scholar]
  10. Kudryavtsev AA. Description of Cochliopodium spiniferum sp. n., with notes on the species identification within the genus Cochliopodium . Acta Protozool 2004; 43:345–349
    [Google Scholar]
  11. Kudryavtsev A, Brown S, Smirnov A. Cochliopodium barki n. sp. (Rhizopoda, Himatismenida) re-isolated from soil 30 years after its initial description. Eur J Protistol 2004; 40:283–287 [View Article]
    [Google Scholar]
  12. Tekle YI, Williams JR. Cytoskeletal architecture and its evolutionary significance in amoeboid eukaryotes and their mode of locomotion. R Soc Open Sci 2016; 3:160283 [View Article][PubMed]
    [Google Scholar]
  13. Bowers B, Korn ED. The fine structure of Acanthamoeba castellanii . J Cell Biol 1968; 39:95–111 [View Article]
    [Google Scholar]
  14. Pussard M, Senaud J, Pons R. Observations ultrastructurales sur Gocevia fonbrunei Pussard 1965 (Protozoa, Rhizopodea). Protistologica 1977; 13:265–285
    [Google Scholar]
  15. Bennett WE. Fine structure of the trophic stage of Endostelium Olive, Bennett & Deasey, 1984 (Eumycetozoea, Protosteliia). Protistologica 1986; 22:205–212
    [Google Scholar]
  16. Cole J, Anderson OR, Tekle YI, Grant J, Kat LA et al. A description of a new "Amoebozoan" isolated from the American lobster, Homarus americanus . J Eukaryot Microbiol 2010; 57:40–47 [View Article][PubMed]
    [Google Scholar]
  17. Rogerson A. Parvamoeba rugata n. g., n. sp., (Gymnamoebia, Thecamoebidae): an exceptionally small marine naked amoeba. Eur J Protistol 1993; 29:446–452 [View Article][PubMed]
    [Google Scholar]
  18. Anderson OR, Tekle YI. A description of Cochliopodium megatetrastylus n. sp. isolated from a freshwater habitat. Acta Protozool 2013; 52:55–64
    [Google Scholar]
  19. Dyková I, Lom J, Machačkova B. Cochliopodium minus, a scale-bearing amoeba isolated from organs of perch Perca fluviatilis . Dis Aquat Org 1998; 34:205–210 [View Article]
    [Google Scholar]
  20. Kudryavtsev AA. Description of Cochliopodium larifeili n. sp.(Lobosea, Himatismenida), an amoeba with peculiar scale structure, and notes on the diagnosis of the genus Cochliopodium (Hertwig and Lesser, 1874) Bark, 1973. Protistology 1999a; 1:66–71
    [Google Scholar]
  21. Kudryavtsev AA. The first isolation of Cochliopodium gulosum Schaeffer, 1926 (Lobosea, Himatismenida) since its initial description. II. Electron-microscopical study and redescription. Protistology 2000; 1:110–112
    [Google Scholar]
  22. Kudryavtsev AA. Redescription of Cochliopodium vestitum (Archer, 1871), a freshwater spine-bearing Cochliopodium . Acta Protozool 2005; 44:123–128
    [Google Scholar]
  23. Kudryavtsev A. "Minute" species of Cochliopodium (Himatismenida): Description of three new fresh- and brackish-water species with a new diagnosis for Cochliopodium minus Page, 1976. Eur J Protistol 2006; 42:77–89 [View Article][PubMed]
    [Google Scholar]
  24. Tekle YI, Roger AO, Lecky AF, Kelly SD. A new freshwater amoeba: Cochliopodium pentatrifurcatum n. sp. (Amoebozoa, Amorphea). J Euk Microbiol 2013; 60:342–349 [View Article][PubMed]
    [Google Scholar]
  25. Kudryavtsev A, Bernhard D, Schlegel M, Chao EEY, Cavalier-Smith T. 18S ribosomal RNA gene sequences of Cochliopodium (Himatismenida) and the phylogeny of Amoebozoa. Protist 2005; 156:215–224 [View Article][PubMed]
    [Google Scholar]
  26. Tekle YI, Wood FC. Longamoebia is not monophyletic: phylogenomic and cytoskeleton analyses provide novel and well-resolved relationships of amoebozoan subclades. Mol Phylogenet Evol 2017; 114:249–260 [View Article][PubMed]
    [Google Scholar]
  27. Prescott DM, James TW. Culturing of Amoeba proteus on Tetrahymena . Exp Cell Res 1955; 8:256–258 [View Article][PubMed]
    [Google Scholar]
  28. Kudryavtsev A, Pawlowski J. Squamamoeba japonica n.g. n.sp. (Amoebozoa): a deep-sea amoeba from the sea of Japan with a novel cell coat structure. Protist 2013; 164:13–23 [View Article][PubMed]
    [Google Scholar]
  29. Kudryavtsev A, Smirnov A. Cochliopodium gallicum n. sp. (Himatismenida), an amoeba bearing unique scales, from cyanobacterial mats in the Camargue (France). Eur J Protistol 2006; 42:3–7 [View Article][PubMed]
    [Google Scholar]
  30. Kudryavtsev A, Pawlowski J, Hausmann K. Description and phylogenetic relationships of Spumochlamys perforata n. sp. and Spumochlamys bryora n. sp. (Amoebozoa, Arcellinida). J Eukaryot Microbiol 2009; 56:495–503 [View Article][PubMed]
    [Google Scholar]
  31. Nassonova E, Smirnov A, Fahrni J, Pawlowski J. Barcoding amoebae: comparison of SSU, its and COI genes as tools for molecular identification of naked lobose amoebae. Protist 2010; 161:102–115 [View Article][PubMed]
    [Google Scholar]
  32. Yoon HS, Grant J, Tekle YI, Wu M, Chaon BC et al. Broadly sampled multigene trees of eukaryotes. BMC Evol Biol 2008; 8:14 [View Article][PubMed]
    [Google Scholar]
  33. Tekle YI. DNA barcoding in Amoebozoa and challenges: the example of Cochliopodium . Protist 2014; 165:473–484 [View Article][PubMed]
    [Google Scholar]
  34. Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27:221–224 [View Article][PubMed]
    [Google Scholar]
  35. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE) New Orleans, LA: 2010 pp 1–18
    [Google Scholar]
  36. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  37. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article][PubMed]
    [Google Scholar]
  38. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001; 17:754–755 [View Article][PubMed]
    [Google Scholar]
  39. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008; 25:1307–1320 [View Article][PubMed]
    [Google Scholar]
  40. Smirnov AV, Brown S. Guide to the study and identification of soil amoebae. Protistology 2004; 3:148–190
    [Google Scholar]
  41. Sawyer TK. Marine amebae from clean and stressed bottom sediments of the Atlantic ocean and Gulf of Mexico. J Protozool 1980; 27:13–32
    [Google Scholar]
  42. Tekle YI, Anderson OR, Katz LA, Maurer-Alcalá XX, Romero MAC et al. Phylogenomics of 'Discosea': A new molecular phylogenetic perspective on Amoebozoa with flat body forms. Mol Phylogenet Evol 2016; 99:144–154 [View Article][PubMed]
    [Google Scholar]
  43. Kudryavtsev A, Pawlowski J, Smirnov A. More amoebae from the deep-sea: two new marine species of Vexillifera (Amoebozoa, Dactylopodida) with notes on taxonomy of the genus. Eur J Protistol 2018; 66:9–25 [View Article][PubMed]
    [Google Scholar]
  44. Smirnov AV. Korotnevella diskophora n. sp.(Gymnamoebia, Paramoebidae)-small freshwater amoeba with peculiar scales. Protistology 1999; 1:30–33
    [Google Scholar]
  45. Udalov IA. Cyst-forming amoebae of the genus Korotnevella (Amoebozoa: Dactylopodida), with description of two new species. Eur J Protistol 2015; 51:480–493 [View Article][PubMed]
    [Google Scholar]
  46. Udalov IA. Pseudoparamoeba microlepis N. sp., Korotnevella fousta n. sp. (Amoebozoa, Dactylopodida), with notes on the evolution of scales among dactylopodid amoebae. Eur J Protistol 2016; 54:33–46 [View Article][PubMed]
    [Google Scholar]
  47. Udalov IA, Lotonin K, Volkova E. Description of a new species of marine amoeba Korotnevella mutabilis n. sp. (Amoebozoa, Dactylopodida). Eur J Protistol 2020; 75:125701–701 [View Article][PubMed]
    [Google Scholar]
  48. Udalov IA, Völcker E, Smirnov A. Korotnevella novazelandica n. sp. (Amoebozoa, Discosea, Dactylopodida) - a new freshwater amoeba with unusual combination of scales. Protistology 2017; 11:238–247 [View Article]
    [Google Scholar]
  49. Udalov IA, Zlatogursky VV, Smirnov AV. A new freshwater naked lobose amoeba Korotnevella venosa n. sp. Amoebozoa, Discosea. J Euk Microbiol 2016; 63:834–840
    [Google Scholar]
  50. Van Wichelen J, D'hondt S, Claeys M, Vyverman W, Berney C. A hotspot of amoebae diversity: 8 new naked amoebae associated with the planktonic bloom-forming cyanobacterium Microcystis . Acta Protozool 2016; 55:61–87
    [Google Scholar]
  51. Kudryavtsev AA. The first isolation of Cochliopodium gulosum Schaeffer, 1926 (Lobosea, Himatismenida) since its initial description. I. Light-microscopical investigation. Protistology 1999b; 1:72–75
    [Google Scholar]
  52. Schaeffer AA. Taxonomy of the Amebas: with Descriptions of Thirty-Nine New Marine and Freshwater Species Washington: Carnegie Institution of Washington; 1926
    [Google Scholar]
  53. Kudryavtsev A. Paravannella minima n. g. n. sp. (Discosea, Vannellidae) and distinction of the genera in the vannellid amoebae. Eur J Protistol 2014; 50:258–269 [View Article][PubMed]
    [Google Scholar]
  54. Kudryavtsev A, Gladkikh A. Two new species of Ripella (Amoebozoa, Vannellida) and unusual intragenomic variability in the SSU rRNA gene of this genus. Eur J Protistol 2017; 61:92–106 [View Article][PubMed]
    [Google Scholar]
  55. Kudryavtsev A, Volkova E. Clydonella sawyeri n. sp. (Amoebozoa, Vannellida): morphological and molecular study and a re-definition of the genus Clydonella Sawyer, 1975. Eur J Protistol 2018; 63:62–71 [View Article][PubMed]
    [Google Scholar]
  56. Smirnov AV, Nassonova ES, Chao E, Cavalier-Smith T. Phylogeny, evolution, and taxonomy of vannellid amoebae. Protist 2007; 158:295–324 [View Article][PubMed]
    [Google Scholar]
  57. Kudryavtsev A, Pawlowski J. Cunea n. g. (Amoebozoa, Dactylopodida) with two cryptic species isolated from different areas of the ocean. Eur J Protistol 2015; 51:197–209 [View Article][PubMed]
    [Google Scholar]
  58. Kudryavtsev A, Volkova E. Cunea russae n. sp. (Amoebozoa, Dactylopodida), another cryptic species of Cunea Kudryavtsev and Pawlowski, 2015, inhabits a continental brackish-water biotope. Eur J Protistol 2020; 73:125685 [View Article][PubMed]
    [Google Scholar]
  59. Atlan D, Coupat-Goutaland B, Risler A, Reyrolle M, Souchon M et al. Micriamoeba tesseris nov. gen. nov. sp.: a new taxon of free-living small-sized amoebae non-permissive to virulent legionellae. Protist 2012; 163:888–902 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004737
Loading
/content/journal/ijsem/10.1099/ijsem.0.004737
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error