1887

Abstract

A Gram-stain-variable, aerobic, rod-shaped, endospore-forming strain R196) was isolated from internal tissues of roots of . Cells were motile with peritrichous flagella. The colonies were light pink on tryptone soya agar medium. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain R196 fell into a phylogenetic cluster belonging to the genus . Strain R196 was closely related to C4-5 and CKOBP-6 with 93.6 and 93.3% sequence similarities, respectively. The major cellular polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three unidentified phospholipids, two unidentified aminophospholipids and an unidentified aminolipid. The dominant respiratory quinone was MK-7. The main cellular fatty acids were anteiso-C (53.01%), C (13.04%) and iso-C (10.80%). The genome size of R196 was 9.45 Mb, containing 7617 predicted protein-coding genes, with a DNA G+C content of 57.7 mol%. Based on the results of phenotypic, chemotaxonomic and whole-genome analyses, strain R196 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is R196 (=ACCC 61713=KCTC 33718).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award No. 31100002)
    • Principle Award Recipient: LeiSun
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004731
2021-03-05
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004731.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004731&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 1993; 64:253–260 [View Article][PubMed]
    [Google Scholar]
  2. Priest FG. Paenibacillus. Bergey’s Manual of Systematics of Archaea and Bacteria New Jersey, USA: John Wiley & Sons, Ltd; 2015
    [Google Scholar]
  3. Kämpfer P, Busse H-J, Kloepper JW, Hu C-H, McInroy JA et al. Paenibacillus cucumis sp. nov., isolated from a cucumber plant. Int J Syst Evol Microbiol 2016; 66:2599–2603 [View Article][PubMed]
    [Google Scholar]
  4. Tohno M, Sakamoto M, Ohkuma M, Tajima K. Paenibacillus silagei sp. nov. isolated from corn silage. Int J Syst Evol Microbiol 2016; 66:3873–3877 [View Article][PubMed]
    [Google Scholar]
  5. Sadaf K, Tushar L, Nirosha P, Podile AR, Sasikala C, Ch S et al. Paenibacillus arachidis sp. nov., isolated from groundnut seeds. Int J Syst Evol Microbiol 2016; 66:2923–2928 [View Article][PubMed]
    [Google Scholar]
  6. Menéndez E, Carro L, Tejedor C, Fernández-Pascual M, Martínez-Molina E et al. Paenibacillus hispanicus sp. nov. isolated from Triticum aestivum roots. Int J Syst Evol Microbiol 2016; 66:4628–4632 [View Article][PubMed]
    [Google Scholar]
  7. Zhang J, Ma X-T, Gao J-S, Zhao J-J, Yin H-Q et al. Paenibacillus oryzae sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 2016; 66:5000–5004 [View Article][PubMed]
    [Google Scholar]
  8. Chen C, Xin K, Li M, Li X, Cheng J et al. Paenibacillus sinopodophylli sp. nov., a siderophore-producing endophytic bacterium isolated from roots of Sinopodophyllum hexandrum (Royle) Ying. Int J Syst Evol Microbiol 2016; 66:4993–4999 [View Article][PubMed]
    [Google Scholar]
  9. Madhaiyan M, Poonguzhali S, Saravanan VS, Pragatheswari D, Duraipandiyan V et al. Paenibacillus methanolicus sp. nov., a xylanolytic, methanol-utilizing bacterium isolated from the phyllosphere of bamboo (Pseudosasa japonica). Int J Syst Evol Microbiol 2016; 66:4362–4366 [View Article][PubMed]
    [Google Scholar]
  10. Kämpfer P, Busse H-J, McInroy JA, Hu C-H, Kloepper JW et al. Paenibacillus nebraskensis sp. nov., isolated from the root surface of field-grown maize. Int J Syst Evol Microbiol 2017; 67:4956–4961 [View Article][PubMed]
    [Google Scholar]
  11. Madhaiyan M, Poonguzhali S, Saravanan VS, Duraipandiyan V, Al-Dhabi NA et al. Paenibacillus polysaccharolyticus sp. nov., a xylanolytic and cellulolytic bacteria isolated from leaves of Bamboo Phyllostachys aureosulcata . Int J Syst Evol Microbiol 2017; 67:2127–2133 [View Article][PubMed]
    [Google Scholar]
  12. Xin K, Li M, Chen C, Yang X, Li Q et al. Paenibacillus qinlingensis sp. nov., an indole-3-acetic acid-producing bacterium isolated from roots of Sinopodophyllum hexandrum (Royle) Ying. Int J Syst Evol Microbiol 2017; 67:589–595 [View Article][PubMed]
    [Google Scholar]
  13. Menéndez E, Flores-Félix JD, Mulas R, Andrés FG, Fernández-Pascual M et al. Paenibacillus tritici sp. nov., isolated from wheat roots. Int J Syst Evol Microbiol 2017; 67:2312–2316 [View Article][PubMed]
    [Google Scholar]
  14. Yan X-R, Tuo L. Paenibacillus paeoniae sp. nov., a novel endophytic bacterium isolated from leaf of Paeonia lactiflora Pall. Int J Syst Evol Microbiol 2018; 68:3606–3610 [View Article][PubMed]
    [Google Scholar]
  15. Tuo L, Yan X-R. Paenibacillus thalictri sp. nov., isolated from surface-sterilized tissue of Thalictrum simplex L. Int J Syst Evol Microbiol 2019; 69:3878–3884 [View Article][PubMed]
    [Google Scholar]
  16. Wang M, Jiang X-W, Tang S-K, Zhi X-Y, Yang L-L. Paenibacillus paridis sp. nov., an endophytic bacterial species isolated from the root of Paris polyphylla Smith var. yunnanensis . Int J Syst Evol Microbiol 2020; 70:1940–1946 [View Article][PubMed]
    [Google Scholar]
  17. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  18. Li L, Sun L, Shi N, Liu L, Guo H et al. Chitinophaga cymbidii sp. nov., isolated from Cymbidium goeringii roots. Int J Syst Evol Microbiol 2013; 63:1800–1804 [View Article][PubMed]
    [Google Scholar]
  19. Lane DJ. 16S/23S rRNA sequencing. In Stackerandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematic Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  20. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  27. Dong Lee S, Lee SD. Paenibacillus cavernae sp. nov., isolated from soil of a natural cave. Int J Syst Evol Microbiol 2016; 66:598–603 [View Article][PubMed]
    [Google Scholar]
  28. Chou J-H, Lee J-H, Lin M-C, Chang P-S, Arun AB et al. Paenibacillus contaminans sp. nov., isolated from a contaminated laboratory plate. Int J Syst Evol Microbiol 2009; 59:125–129 [View Article][PubMed]
    [Google Scholar]
  29. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  30. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  31. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article][PubMed]
    [Google Scholar]
  34. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  35. Kämpfer P, Rosselló-Mora R, Falsen E, Busse H-J, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006; 56:781–786 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004731
Loading
/content/journal/ijsem/10.1099/ijsem.0.004731
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error