1887

Abstract

Currently, contains four subspecies: subsp. , subsp. , subsp. and subsp. . In the study of Pérez , these four subspecies could be clearly divided into two groups based on sequence analysis: subsp. and subsp. ; subsp. and subsp. . The two groups had a relatively low DNA–DNA hybridization value (about 60 %). In the present study, the taxonomic position of subsp. and subsp. was re-examined based on sequence analyses of 16S rRNA, , and genes, average nucleotide identity (ANI) values and digital DNA–DNA hybridization (dDDH) values. The result of 16S rRNA gene sequence analysis indicated that subsp. NCDO 607 and subsp. L105 were phylogenetically related to the type strains of subsp. , subsp. , , , , , , and . The 16S rRNA gene, , , and concatenated , and sequence similarities, ANI values, and dDDH values between the type strains of subsp. , subsp. and phylogenetically related species were 93.5–99.4 %, 83.3–97.6 %, 80.6–92.4 %, 79.7–92.7 %, 83.5–94.3 %, 72.4–86.9 % and 21.4–32.5 %, respectively. Lower than 95–96 % ANI values and lower than 70 % dDDH values confirmed that the type strains of subsp. and subsp. represent a novel species in the genus . Because subsp. was proposed and validated before subsp. , subsp. is elevated to the species level as sp. nov. and subsp. is transferred to as subsp. comb. nov. The type strain of sp. nov. is NCDO 607 (=ATCC 19257=DSM 20069=JCM 16167=LMG 6897=NBRC 100676). The type strain of subsp. comb. nov. is L105 (=NBRC 110453=DSM 21502=JCM 31125=LMG 24662).

Keyword(s): genome , Lactococcus and reclassification
Funding
This study was supported by the:
  • Agricultural Science and Technology Innovation Program, China (ASTIP) and the Building of Modern Agricultural Industry (Bees) R&D Systems in China (Award NYCYTI-43-KXJ17)
    • Principle Award Recipient: WenLi Tian
  • National Natural Science Foundation of China (Award no. 31972087)
    • Principle Award Recipient: WenLi Tian
  • National Natural Science Foundation of China (Award no. 31471594)
    • Principle Award Recipient: ChunTao Gu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004727
2021-03-02
2021-04-18
Loading full text...

Full text loading...

References

  1. Ludwig W, Schleifer KH, Whitman WB et al. Taxonomic outline of the phylum Firmicutes . In De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2009 pp 15–17
    [Google Scholar]
  2. Schleifer KH, Kraus J, Dvorak C, Kilpper-Balz R, Collins MD et al. Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov. Syst Appl Microbiol 1985; 6:183–195 [CrossRef]
    [Google Scholar]
  3. von Wright A. Genus Lactococcus . In Lahtinen S, Ouwehand AC, Salminen S, Von Wright A. (editors) Lactic Acid Bacteria: Microbiological and Functional Aspects, 4th edn. Boca Raton: CRC Press Taylor and Francis Group; 2012 pp 63–76
    [Google Scholar]
  4. Anonymous Validation list no. 20. Validation of publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Evol Microbiol 1986; 36:354–356
    [Google Scholar]
  5. Pérez T, Balcázar JL, Peix A, Valverde A, Velázquez E et al. Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). Int J Syst Evol Microbiol 2011; 61:1894–1898 [CrossRef][PubMed]
    [Google Scholar]
  6. Chen Y-S, Chang C-H, Pan S-F, Wang L-T, Chang Y-C et al. Lactococcus taiwanensis sp. nov., a lactic acid bacterium isolated from fresh cummingcordia. Int J Syst Evol Microbiol 2013; 63:2405–2409 [CrossRef][PubMed]
    [Google Scholar]
  7. Pheng S, Han HL, Park D-S, Chung CH, Kim S-G. Lactococcus kimchii sp. nov., a new lactic acid bacterium isolated from kimchi. Int J Syst Evol Microbiol 2020; 70:505–510 [CrossRef][PubMed]
    [Google Scholar]
  8. Heo J, Cho H, Tamura T, Saitou S, Park K et al. Lactococcus allomyrinae sp. nov., isolated from gut of larvae of Allomyrina dichotoma . Int J Syst Evol Microbiol 2019; 69:3682–3688 [CrossRef][PubMed]
    [Google Scholar]
  9. Heo J, Kim S-J, Kim MA, Tamura T, Saitou S et al. Lactococcus protaetiae sp. nov. and Xylanimonas protaetiae sp. nov., isolated from gut of larvae of Protaetia brevitarsis seulensis . Antonie van Leeuwenhoek 2020; 113:1009–1021 [CrossRef][PubMed]
    [Google Scholar]
  10. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005; 151:2141–2150 [CrossRef][PubMed]
    [Google Scholar]
  11. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  12. Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 1989; 29:170–179 [CrossRef][PubMed]
    [Google Scholar]
  13. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  15. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from illumina MiSeq data. Bioinformatics 2015; 31:587–589 [CrossRef][PubMed]
    [Google Scholar]
  16. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  17. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  18. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R et al. The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res 2020; 48:D606–D612 [CrossRef][PubMed]
    [Google Scholar]
  19. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  20. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  21. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  22. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  23. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  24. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  25. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [CrossRef]
    [Google Scholar]
  26. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [CrossRef][PubMed]
    [Google Scholar]
  27. Parrello B, Butler R, Chlenski P, Olson R, Overbeek J et al. A machine learning-based service for estimating quality of genomes using PATRIC. BMC Bioinformatics 2019; 20:486 [CrossRef][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004727
Loading
/content/journal/ijsem/10.1099/ijsem.0.004727
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error