1887

Abstract

Members of the metabolically diverse order inhabit a wide range of environments. Two strains affiliated with this order were isolated from soils in Germany and characterized by a polyphasic approach. Cells of strains 0125_3 and Swamp67 are Gram-negative rods, non-motile, non-spore-forming, non-capsulated and divide by binary fission. They tested catalase-negative, but positive for cytochrome -oxidase. Both strains form small white colonies on agar plates and grow aerobically and chemoorganotrophically on SSE/HD 1 : 10 medium, preferably utilizing organic acids and proteinaceous substrates. Strains 0125_3 and Swamp67 are mesophilic and grow optimally without NaCl addition at slightly alkaline conditions. Major fatty acids are C7, C and C. The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyglycerol. The predominant respiratory quinone is Q-8. The G+C content for 0125_3 and Swamp67 was 67 and 66.1 %, respectively. The 16S rRNA gene analysis indicated that the closest relatives (<91 % sequence similarity) of strain 0125_3 were ATCC 25196, FAM5 and AcBE2-1, while ATCC 25196, Nv1 and APG3 were closest to strain Swamp67. The two novel strains shared 97.4 % 16S rRNA gene sequence similarity with one another and show low average nucleotide identity of their genomes (83.8 %). Based on the phenotypic, chemotaxonomic, genomic and phylogenetic analysis, we propose the two novel species sp. nov (type strain 0125_3=DSM 104443=LMG 29998=CECT 9241) and sp. nov. (type strain Swamp67=DSM 104440=LMG 29997=CECT 9242) of the novel genus gen. nov., within the novel family fam. nov.

Keyword(s): soil bacteria and Usitatibacter
Funding
This study was supported by the:
  • Deutsche Forschungsgemeinschaft (Award OV 20/21-1)
    • Principle Award Recipient: JörgOvermann
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004631
2021-01-12
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/2/ijsem004631.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004631&mimeType=html&fmt=ahah

References

  1. Boden R, Hutt LP, Rae AW. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the 'Proteobacteria', and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol 2017; 67:1191–1205 [View Article][PubMed]
    [Google Scholar]
  2. Koops HP, Bottcher B, Moller UC, Pommerening-Roser A, Stehr G. Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov. J Gen Microbiol 1991; 137:1689–1699
    [Google Scholar]
  3. Head IM, Hiorns WD, Embley TM, McCarthy AJ, Saunders JR. The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J Gen Microbiol 1993; 139:1147–1153 [View Article][PubMed]
    [Google Scholar]
  4. Schmidt I. Chemoorganoheterotrophic growth of Nitrosomonas europaea and Nitrosomonas eutropha. Curr Microbiol 2009; 59:130–138 [View Article][PubMed]
    [Google Scholar]
  5. Jenkins O, Byrom D, Jones D. Methylophilus: a new genus of methanol-utilizing bacteria. Int J Syst Bacteriol 1987; 37:446–448
    [Google Scholar]
  6. Doronina N, Ivanova E, Trotsenko Y, Pshenichnikova A, Kalinina E et al. Methylophilus quaylei sp. nov., a new aerobic obligately methylotrophic bacterium. Syst Appl Microbiol 2005; 28:303–309 [View Article][PubMed]
    [Google Scholar]
  7. Kalyuzhnaya MG, De Marco P, Bowerman S, Pacheco CC, Lara JC et al. Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol 2006; 56:2517–2522 [View Article][PubMed]
    [Google Scholar]
  8. Kalyuzhnaya MG, Bowerman S, Lara JC, Lidstrom ME, Chistoserdova L. Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int J Syst Evol Microbiol 2006; 56:2819–2823 [View Article][PubMed]
    [Google Scholar]
  9. Lv H, Sahin N, Tani A. Methylotenera oryzisoli sp. nov., a lanthanide-dependent methylotrophic bacteria isolated from rice field soil. Int J Syst Evol Microbiol 2020; 70:2713–2718 [View Article][PubMed]
    [Google Scholar]
  10. Podkopaeva D, Grabovich M, Kuever J, Lysenko AM, Tourova TP et al. Proposal of Spirillum winogradskyi sp. nov., a novel microaerophilic species, an emended description of the genus Spirillum and request for an opinion regarding the status of the species Spirillum volutans Ehrenberg 1832. Int J Syst Evol Microbiol 2009; 59:2916–2920 [View Article][PubMed]
    [Google Scholar]
  11. Fahrbach M, Kuever J, Meinke R, Kämpfer P, Hollender J. Denitratisoma oestradiolicum gen. nov., sp. nov., a 17beta-oestradiol-degrading, denitrifying betaproteobacterium. Int J Syst Evol Microbiol 2006; 56:1547–1552 [View Article][PubMed]
    [Google Scholar]
  12. Weelink SAB, van Doesburg W, Saia FT, Rijpstra WIC, Röling WFM et al. A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiol Ecol 2009; 70:575–585 [View Article][PubMed]
    [Google Scholar]
  13. Kato S, Krepski S, Chan C, Itoh T, Ohkuma M. Ferriphaselus amnicola gen. nov., sp. nov., a neutrophilic, stalk-forming, iron-oxidizing bacterium isolated from an iron-rich groundwater seep. Int J Syst Evol Microbiol 2014; 64:921–925 [View Article][PubMed]
    [Google Scholar]
  14. Hallbeck L, Pedersen K. Benefits associated with the stalk of Gallionella ferruginea, evaluated by comparison of a stalk-forming and a non-stalk-forming strain and biofilm studies in situ. Microb Ecol 1995; 30:257–268 [View Article][PubMed]
    [Google Scholar]
  15. Beijerinck MW. Phénomènes de réduction produits PAR les microbes. Arch Néerlandaises des Sci Exactes Nat 1904; 9:131–157
    [Google Scholar]
  16. Khalifa A, Nakasuji Y, Saka N, Honjo H, Asakawa S et al. Ferrigenium kumadai gen. nov., sp. nov., a microaerophilic iron-oxidizing bacterium isolated from a paddy field soil. Int J Syst Evol Microbiol 2018; 68:2587–2592 [View Article][PubMed]
    [Google Scholar]
  17. Lv H, Sahin N, Tani A. Isolation and genomic characterization of Novimethylophilus kurashikiensis gen. nov. sp. nov., a new lanthanide-dependent methylotrophic species of Methylophilaceae. Environ Microbiol 2018; 20:1204–1223 [View Article][PubMed]
    [Google Scholar]
  18. Urakawa H, Garcia JC, Nielsen JL, Le VQ, Kozlowski JA et al. Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment. Int J Syst Evol Microbiol 2015; 65:242–250 [View Article][PubMed]
    [Google Scholar]
  19. Kojima H, Fukui M. Sulfurisoma sediminicola gen. nov., sp. nov., a facultative autotroph isolated from a freshwater lake. Int J Syst Evol Microbiol 2014; 64:1587–1592 [View Article][PubMed]
    [Google Scholar]
  20. Smalley NE, Taipale S, De Marco P, Doronina NV, Kyrpides N et al. Functional and genomic diversity of methylotrophic Rhodocyclaceae: description of Methyloversatilis discipulorum sp. nov. Int J Syst Evol Microbiol 2015; 65:2227–2233 [View Article][PubMed]
    [Google Scholar]
  21. Watanabe T, Kojima H, Shinohara A, Fukui M. Sulfurirhabdus autotrophica gen. nov., sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2016; 66:113–117 [View Article][PubMed]
    [Google Scholar]
  22. Watanabe T, Kojima H, Fukui M. Sulfuriferula multivorans gen. nov., sp. nov., isolated from a freshwater lake, reclassification of 'Thiobacillus plumbophilus' as Sulfuriferula plumbophilus sp. nov., and description of Sulfuricellaceae fam. nov. and Sulfuricellales ord. nov. Int J Syst Evol Microbiol 2015; 65:1504–1508 [View Article][PubMed]
    [Google Scholar]
  23. Kojima H, Fukui M. Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake. Int J Syst Evol Microbiol 2010; 60:2862–2866 [View Article][PubMed]
    [Google Scholar]
  24. Kojima H, Fukui M. Sulfuritalea hydrogenivorans gen. nov., sp. nov., a facultative autotroph isolated from a freshwater lake. Int J Syst Evol Microbiol 2011; 61:1651–1655 [View Article][PubMed]
    [Google Scholar]
  25. Emerson D, Field EK, Chertkov O, Davenport KW, Goodwin L et al. Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics. Front Microbiol 2013; 4:254 [View Article][PubMed]
    [Google Scholar]
  26. Kato S, Ohkuma M, Powell DH, Krepski ST, Oshima K et al. Comparative genomic insights into ecophysiology of neutrophilic, microaerophilic iron oxidizing bacteria. Front Microbiol 2015; 6:1265 [View Article][PubMed]
    [Google Scholar]
  27. Kojima H, Watanabe M, Fukui M. Sulfuritortus calidifontis gen. nov., sp. nov., a sulfur oxidizer isolated from a hot spring microbial mat. Int J Syst Evol Microbiol 2017; 67:1355–1358 [View Article][PubMed]
    [Google Scholar]
  28. Doronina NV, Kaparullina EN, Trotsenko YA. Methyloversatilis thermotolerans sp. nov., a novel thermotolerant facultative methylotroph isolated from a hot spring. Int J Syst Evol Microbiol 2014; 64:158–164 [View Article][PubMed]
    [Google Scholar]
  29. Weiss J V, Rentz JA, Plaia T, Neubauer SC, Merrill-Floyd M. Characterization of neutrophilic Fe(II)-Oxidizing bacteria isolated from the rhizosphere of wetland plants and description of Ferritrophicum radicicola gen. nov. sp. nov., and Sideroxydans paludicola sp. nov. Geomicrobiol J 2007; 24:559–570
    [Google Scholar]
  30. Madhaiyan M, Poonguzhali S, Senthilkumar M, Pragatheswari D, Lee K-C et al. Methylobacillus rhizosphaerae sp. nov., a novel plant-associated methylotrophic bacterium isolated from rhizosphere of red pepper. Antonie van Leeuwenhoek 2013; 103:475–484 [View Article][PubMed]
    [Google Scholar]
  31. Doronina NV, Gogleva AA, Trotsenko YA. Methylophilus glucosoxydans sp. nov., a restricted facultative methylotroph from rice rhizosphere. Int J Syst Evol Microbiol 2012; 62:196–201 [View Article][PubMed]
    [Google Scholar]
  32. Madhaiyan M, Poonguzhali S, Kwon S-W, Sa T-M. Methylophilus rhizosphaerae sp. nov., a restricted facultative methylotroph isolated from rice rhizosphere soil. Int J Syst Evol Microbiol 2009; 59:2904–2908 [View Article][PubMed]
    [Google Scholar]
  33. Doronina NV, Kaparullina EN, Trotsenko IA. [Methylovorus menthalis, a novel species of aerobic obligate methylobacteria associated with plants]. Mikrobiologiia 2011; 80:713–719[PubMed]
    [Google Scholar]
  34. Doronina NV, Ivanova EG, Trotsenko YA. Phylogenetic position and emended description of the genus Methylovorus. Int J Syst Evol Microbiol 2005; 55:903–906 [View Article][PubMed]
    [Google Scholar]
  35. Gogleva AA, Kaparullina EN, Doronina NV, Trotsenko YA. Methylophilus flavus sp. nov. and Methylophilus luteus sp. nov., aerobic, methylotrophic bacteria associated with plants. Int J Syst Evol Microbiol 2010; 60:2623–2628 [View Article][PubMed]
    [Google Scholar]
  36. Gogleva AA, Kaparullina EN, Doronina NV, Trotsenko YA. Methylobacillus arboreus sp. nov., and Methylobacillus gramineus sp. nov., novel non-pigmented obligately methylotrophic bacteria associated with plants. Syst Appl Microbiol 2011; 34:477–481 [View Article][PubMed]
    [Google Scholar]
  37. Kaparullina EN, Trotsenko YA, Doronina NV. Methylobacillus methanolivorans sp. nov., a novel non-pigmented obligately methylotrophic bacterium. Int J Syst Evol Microbiol 2017; 67:425–431 [View Article][PubMed]
    [Google Scholar]
  38. Govorukhina NI, Kletsova LV, Tsygankov YD, Trotsenko YA, Netrusov A. Characteristics of a new obligate methylotroph. Mikrobiologiya 1987; 56:849–854
    [Google Scholar]
  39. Kelly DP, Wood AP. Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the beta-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain. Int J Syst Evol Microbiol 2000; 50 Pt 2:547–550 [View Article][PubMed]
    [Google Scholar]
  40. Govorukhina NI, Trotsenko YA. Methylovorus, a new genus of restricted facultatively methylotrophic bacteria. Int J Syst Bacteriol 1991; 41:158–162
    [Google Scholar]
  41. Sheu C, Cai C-Y, Sheu S-Y, Li Z-H, Chen W-M. Pseudomethylobacillus aquaticus gen. nov., sp. nov., a new member of the family Methylophilaceae isolated from an artificial reservoir. Int J Syst Evol Microbiol 2019; 69:3551–3559 [View Article][PubMed]
    [Google Scholar]
  42. Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A. Implementing large-scale and long-term functional biodiversity research: the biodiversity Exploratories. Basic Appl Ecol 2010; 11:473–485
    [Google Scholar]
  43. Pascual J, Wüst PK, Geppert A, Foesel BU, Huber KJ et al. Novel isolates double the number of chemotrophic species and allow the first description of higher taxa in Acidobacteria subdivision 4. Syst Appl Microbiol 2015; 38:534–544 [View Article][PubMed]
    [Google Scholar]
  44. Wüst PK, Foesel BU, Geppert A, Huber KJ, Luckner M et al. Brevitalea aridisoli, B. deliciosa and Arenimicrobium luteum, three novel species of Acidobacteria subdivision 4 (class Blastocatellia) isolated from savanna soil and description of the novel family Pyrinomonadaceae. Int J Syst Evol Microbiol 2016; 66:3355–3366 [View Article][PubMed]
    [Google Scholar]
  45. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979; 43:260–296[PubMed]
    [Google Scholar]
  46. Tschech A, Pfennig N. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 1984; 137:163–167
    [Google Scholar]
  47. Camarinha-Silva A, Jáuregui R, Chaves-Moreno D, Oxley APA, Schaumburg F et al. Comparing the anterior NarE bacterial community of two discrete human populations using illumina amplicon sequencing. Environ Microbiol 2014; 16:2939–2952 [View Article][PubMed]
    [Google Scholar]
  48. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73:5261–5267 [View Article][PubMed]
    [Google Scholar]
  49. Vieira S, Luckner M, Wanner G, Overmann J. Luteitalea pratensis gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil. Int J Syst Evol Microbiol 2017; 67:1408–1414 [View Article][PubMed]
    [Google Scholar]
  50. Yoon SH, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  51. Foesel BU, Rohde M, Overmann J. Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil - the first described species of Acidobacteria subdivision 4. Syst Appl Microbiol 2013; 36:82–89 [View Article][PubMed]
    [Google Scholar]
  52. Huber KJ, Geppert AM, Wanner G, Fösel BU, Wüst PK et al. The first representative of the globally widespread subdivision 6 Acidobacteria,Vicinamibacter silvestris gen. nov., sp. nov., isolated from subtropical savannah soil. Int J Syst Evol Microbiol 2016; 66:2971–2979 [View Article][PubMed]
    [Google Scholar]
  53. Wanner G, Vogl K, Overmann J. Ultrastructural characterization of the prokaryotic symbiosis in "Chlorochromatium aggregatum". J Bacteriol 2008; 190:3721–3730 [View Article][PubMed]
    [Google Scholar]
  54. Kalyuzhnaya MG, Beck DAC, Vorobev A, Smalley N, Kunkel DD et al. Novel methylotrophic isolates from lake sediment, description of Methylotenera versatilis sp. nov. and emended description of the genus Methylotenera. Int J Syst Evol Microbiol 2012; 62:106–111 [View Article][PubMed]
    [Google Scholar]
  55. Watanabe T, Kojima H, Fukui M. Sulfuriferula thiophila sp. nov., a chemolithoautotrophic sulfur-oxidizing bacterium, and correction of the name Sulfuriferula plumbophilus Watanabe, Kojima and Fukui 2015 to Sulfuriferula plumbiphila corrig. Int J Syst Evol Microbiol 2016; 66:2041–2045 [View Article][PubMed]
    [Google Scholar]
  56. Cowan ST, Barrow GI, Steel KJ, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge University Press: 1993
    [Google Scholar]
  57. Jones RD, Morita RY, Koops H-P, Watson SW. A new marine ammonium-oxidizing bacterium, Nitrosomonas cryotolerans sp. nov. Can J Microbiol 1988; 34:1122–1128
    [Google Scholar]
  58. Tarlera S. Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the β-Proteobacteria. Int J Syst Evol Microbiol 2003; 53:1085–1091
    [Google Scholar]
  59. Huber KJ, Wüst PK, Rohde M, Overmann J, Foesel BU. Aridibacter famidurans gen. nov., sp. nov. and Aridibacter kavangonensis sp. nov., two novel members of subdivision 4 of the Acidobacteria isolated from semiarid savannah soil. Int J Syst Evol Microbiol 2014; 64:1866–1875 [View Article][PubMed]
    [Google Scholar]
  60. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202
    [Google Scholar]
  61. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. Stat 20011–6
    [Google Scholar]
  62. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  63. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  64. Turner S, Pryer KM, Miao VP, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 1999; 46:327–338 [View Article][PubMed]
    [Google Scholar]
  65. Lane D. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics 1991 pp 115–175
    [Google Scholar]
  66. Davis KER, Joseph SJ, Janssen PH. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 2005; 71:826–834 [View Article][PubMed]
    [Google Scholar]
  67. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  68. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  69. Vieira S, Pascual J, Boedeker C, Geppert A, Riedel T et al. Terricaulis silvestris gen. nov., sp. nov., a novel prosthecate, budding member of the family Caulobacteraceae isolated from forest soil. Int J Syst Evol Microbiol 2020; 70:4966–4977 [View Article][PubMed]
    [Google Scholar]
  70. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  71. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article][PubMed]
    [Google Scholar]
  72. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article][PubMed]
    [Google Scholar]
  73. Na S-I, Kim YO, Yoon S-H, Ha S, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  74. Yoon S-H, Ha S, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  75. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  76. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  77. Nakagawa T, Takahashi R. Nitrosomonas stercoris sp. nov., a chemoautotrophic ammonia-oxidizing bacterium tolerant of high ammonium isolated from composted cattle manure. Microbes Environ 2015; 30:221–227 [View Article][PubMed]
    [Google Scholar]
  78. Winogradsky S. Contributions a La Morphologie Des Organismes De La Nitrification St Petersbourg: Arkhiv Biologicheskikh Nauk; 1892
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004631
Loading
/content/journal/ijsem/10.1099/ijsem.0.004631
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error