1887

Abstract

Fungal communities associated with macroalgae remain largely unexplored. To characterize algicolous fungal communities using culture dependent methods, macroalgae were collected from different sampling sites in the Ria de Aveiro estuary, Portugal. From a collection of 486 isolates that were obtained, 213 representative isolates were selected through microsatellite-primed PCR (MSP-PCR) fingerprinting analysis. The collection yielded 33 different genera, which were identified using the ITS region of the rDNA. The results revealed that the most abundant taxa in all collections were -like species: , , and . The fungal community composition varied with macroalgae species. Through multilocus phylogenetic analyses based on ITS, , and sequences, in addition to detailed morphological data, we propose sp. nov. (type strain=CMG 28=MUM 19.39) and sp. nov. (type strain=CMG 29=MUM 19.40) as novel species.

Funding
This study was supported by the:
  • Fundação para a Ciência e a Tecnologia (Award CEECIND/01373/2018)
    • Principle Award Recipient: CátiaFidalgo
  • Fundação para a Ciência e a Tecnologia (Award SFRH/BD/119270/2016)
    • Principle Award Recipient: CláudioBrandão
  • UIDB/50017/2020+UIDP/50017/2020 (Award SFRH/BD/129020/2017)
    • Principle Award Recipient: MicaelF.M. Gonçalves
  • Fundação para a Ciência e a Tecnologia (PT) (Award UIDB/50017/2020+UIDP/50017/2020)
    • Principle Award Recipient: NotApplicable
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004630
2021-01-08
2021-08-02
Loading full text...

Full text loading...

References

  1. Bugni TS, Ireland CM. Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 2004; 21:143–163 [View Article][PubMed]
    [Google Scholar]
  2. Ogaki MB, de Paula MT, Ruas D, Pellizzari FM, García-Laviña CX. Marine Fungi Associated with Antarctic Macroalgae Cham: The Ecological Role of Micro-organisms in the Antarctic Environment. Springer; 2019 pp 239–255
    [Google Scholar]
  3. Raghukumar S. Fungi in Coastal and Oceanic Marine Ecosystems 378 New York: Springer; 2017
    [Google Scholar]
  4. Suryanarayanan TS. Fungal endosymbionts of seaweeds. Biology of Marine Fungi Germany: Springer; 2012 pp 53–69
    [Google Scholar]
  5. Jones EBG, Pang K-L, Abdel-Wahab MA, Scholz B, Hyde KD et al. An online resource for marine fungi. Fungal Divers 2019; 96:347–433 [View Article]
    [Google Scholar]
  6. Gonçalves MFM, Esteves AC, Alves A. Revealing the hidden diversity of marine fungi in Portugal with the description of two novel species, Neoascochyta fuci sp. nov. and Paraconiothyrium salinum sp. nov. Int J Syst Evol Microbiol 2020; 70:5337–5354 [View Article][PubMed]
    [Google Scholar]
  7. Garzoli L, Poli A, Prigione V, Gnavi G, Varese GC. Peacock’s tail with a fungal cocktail: first assessment of the mycobiota associated with the brown alga Padina pavonica. Fungal Ecol 2018; 35:87–97 [View Article]
    [Google Scholar]
  8. Gnavi G, Garzoli L, Poli A, Prigione V, Burgaud G et al. The culturable mycobiota of Flabellia petiolata: first survey of marine fungi associated to a Mediterranean green alga. PLoS One 2017; 12:e0175941 [View Article][PubMed]
    [Google Scholar]
  9. Raghukumar C. Biology of Marine Fungi 53 Springer Science & Business Media; 2012
    [Google Scholar]
  10. Calado MdaL, Carvalho L, Pang K-L, Barata M. Diversity and ecological characterization of sporulating higher filamentous marine fungi associated with Spartina maritima (Curtis) Fernald in two Portuguese salt marshes. Microb Ecol 2015; 70:612–633 [View Article][PubMed]
    [Google Scholar]
  11. Sridhar KR. Marine filamentous fungi: diversity, distribution and bioprospecting. Dev Fungal Biol Appl Mycol 201759–73
    [Google Scholar]
  12. Furbino LE, Godinho VM, Santiago IF, Pellizari FM, Alves TMA et al. Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microb Ecol 2014; 67:775–787 [View Article][PubMed]
    [Google Scholar]
  13. Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya NS et al. Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME 2013; 7:1434–1451 [View Article][PubMed]
    [Google Scholar]
  14. Möller EM, Bahnweg G, Sandermann H, Geiger HH. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 1992; 20:6115–6116 [View Article][PubMed]
    [Google Scholar]
  15. Alves A, Phillips AJL, Henriques I, Correia A. Rapid differentiation of species of Botryosphaeriaceae by PCR fingerprinting. Res Microbiol 2007; 158:112–121 [View Article][PubMed]
    [Google Scholar]
  16. Alves A, Correia A, Luque J, Phillips A. Botryosphaeria corticola, sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph, Diplodia mutila. Mycologia 2004; 96:598–613 [View Article][PubMed]
    [Google Scholar]
  17. Bensch K, Braun U, Groenewald JZ, Crous PW. The genus Cladosporium. Stud Mycol 2012; 72:1–401 [View Article][PubMed]
    [Google Scholar]
  18. Sandoval-Denis M, Gené J, Sutton DA, Wiederhold NP, Cano-Lira JF et al. New species of Cladosporium associated with human and animal infections. Persoonia 2016; 36:281–298 [View Article][PubMed]
    [Google Scholar]
  19. Kuhnert E, Fournier J, Peršoh D, Luangsa-ard JJD, Stadler M. New Hypoxylon species from Martinique and new evidence on the molecular phylogeny of Hypoxylon based on ITS rDNA and β-tubulin data. Fungal Divers 2014; 64:181–203 [View Article]
    [Google Scholar]
  20. Lopes A, Phillips AJL, Alves A. Mating type genes in the genus Neofusicoccum: mating strategies and usefulness in species delimitation. Fungal Biol 2017; 121:394–404 [View Article][PubMed]
    [Google Scholar]
  21. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  22. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Sym Ser 1999; 41:95–98
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  24. Swofford DL. PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods). Version 4.0 Sunderland, Massachusetts: Sinauer Associates; 2000
    [Google Scholar]
  25. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003; 19:1572–1574 [View Article][PubMed]
    [Google Scholar]
  26. Syme P. Werner’s Nomenclature of Colours: Adapted to Zoology, Botany, Chemistry, Mineralogy, Anatomy, and the Arts Smithsonian Institution; 2018
    [Google Scholar]
  27. Bensch K, Groenewald JZ, Meijer M, Dijksterhuis J, Jurjević Ž et al. Cladosporium species in indoor environments. Stud Mycol 2018; 89:177–301 [View Article][PubMed]
    [Google Scholar]
  28. Thirumalanadhuni V, Palempalli UD. Molecular characterization and endophytic life style pattern of Cladosporium uredinicola derived from marine brown alga dictyota dichotoma. J Pure Appl Microbiol 2018; 12:1661–1666 [View Article]
    [Google Scholar]
  29. Ding L, Qin S, Li F, Chi X, Laatsch H. Isolation, antimicrobial activity, and metabolites of fungus Cladosporium sp. associated with red alga Porphyra yezoensis. Curr Microbiol 2008; 56:229–235 [View Article][PubMed]
    [Google Scholar]
  30. Trivedi N, Reddy CRK, Radulovich R, Jha B. Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Res 2015; 9:48–54 [View Article]
    [Google Scholar]
  31. Henríquez M, Vergara K, Norambuena J, Beiza A, Maza F et al. Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World J Microbiol Biotechnol 2014; 30:65–76 [View Article][PubMed]
    [Google Scholar]
  32. Liu JK, Hyde KD, Jeewon R, Phillips AJL. Maharachchikumbura ssn, et al. ranking higher taxa using divergence times: a case study in Dothideomycetes. Fungal Divers 2017; 84:75–99
    [Google Scholar]
  33. Gonçalves MFM, Vicente TFL, Esteves AC, Alves A. Neptunomyces aureus gen. et sp. nov. (Didymosphaeriaceae, Pleosporales) isolated from algae in Ria de Aveiro, Portugal. MycoKeys 2019; 60:31–44 [View Article][PubMed]
    [Google Scholar]
  34. Zare R, Gams W. More white verticillium-like anamorphs with erect conidiophores. Mycol Progress 2016; 15:993–1030 [View Article]
    [Google Scholar]
  35. Grum-Grzhimaylo AA, Georgieva ML, Debets AJM, Bilanenko EN. Are alkalitolerant fungi of the Emericellopsis lineage (Bionectriaceae) of marine origin?. IMA Fungus 2013; 4:213–228 [View Article][PubMed]
    [Google Scholar]
  36. Giraldo A, Gené J, Sutton DA, Wiederhold N, Guarro J. New acremonium-like species in the Bionectriaceae and Plectosphaerellaceae. Mycol Progress 2017; 16:349–368 [View Article]
    [Google Scholar]
  37. Perdomo H, Sutton DA, García D, Fothergill AW, Cano J et al. Spectrum of clinically relevant Acremonium species in the United States. J Clin Microbiol 2011; 49:243–256 [View Article][PubMed]
    [Google Scholar]
  38. Konovalova O, Logacheva M. Mitochondrial genome of two marine fungal species. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 27:4280–4281 [View Article][PubMed]
    [Google Scholar]
  39. Gonçalves MFM, Vicente TFL, Esteves AC, Alves A. Novel halotolerant species of Emericellopsis and Parasarocladium associated with macroalgae in an estuarine environment. Mycologia 2020; 112:154–171 [View Article][PubMed]
    [Google Scholar]
  40. Gonçalves MFM, Santos L, Silva BMV, Abreu AC, Vicente TFL et al. Biodiversity of Penicillium species from marine environments in Portugal and description of Penicillium lusitanum sp. nov., a novel species isolated from sea water. Int J Syst Evol Microbiol 2019; 69:3014–3021 [View Article][PubMed]
    [Google Scholar]
  41. Li F, Li K, Li X, Wang B. Chemical constituents of marine algal-derived endophytic fungus Exophiala oligosperma EN-21. Chin J Ocean Limnol 2011; 29:63–67 [View Article]
    [Google Scholar]
  42. Costello MJ, Emblow C, White RJ. European register of marine species a check-list of the marine species in Europe and a bibliography of guides to their identification. Patrimoines Naturels 2001
    [Google Scholar]
  43. Hyde KD, Hongsanan S, Jeewon R, Bhat DJ, McKenzie EHC et al. Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 2016; 80:1–270 [View Article]
    [Google Scholar]
  44. Hyde KD, Norphanphoun C, Abreu VP, Bazzicalupo A, Thilini Chethana KW et al. Fungal diversity notes 603–708: taxonomic and phylogenetic notes on genera and species. Fungal Divers 2017; 87:1–235 [View Article]
    [Google Scholar]
  45. Fournier J, Köpcke B, Stadler M. New species of Hypoxylon from western Europe and Ethiopia. Mycotaxon 2010; 113:209–235 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004630
Loading
/content/journal/ijsem/10.1099/ijsem.0.004630
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error