1887

Abstract

A prosthecate bacterial strain, designated G-192, was isolated from decaying biomass of a haloalkaliphilic cyanobacterium sp. Z-T0701. The cells were aerobic, Gram-negative, non-endospore-forming and dimorphic, occurring either as sessile bacteria with a characteristic stalk or as motile flagellated cells. The strain utilized a limited range of substrates, mostly peptonaceous, but was able to degrade whole proteins. Growth occurred at 5–46 °C (optimum, 35–40 °C), pH 7.3–10.3 (optimum, pH 8.0–9.0), 0–14 % NaCl (v/w; optimum, 2.0–6.0 %, v/w). The G+C content of the genomic DNA of strain G-192 was 66.8%. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain G-192 formed a distinct evolutionary lineage within the family . Strain G-192 showed the highest 16S rRNA sequence similarity to ZYF765 (95.2%), GISW-4 (94.2%) and WD6-1 (95.5%). The major cellular fatty acids (>5% of the total) were C 9, C and 11-methyl-C ω7. The major polar lipids were glycolipids and phospholipids. The only respiratory quinone was ubiquinone-10 (Q-10). Based on polyphasic results including phylogenomic data, the novel strain could be distinguished from other genera, which suggests that strain G-192 represents a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain is G-192 (=VKM B-3306=KCTC 72746). The strain is the first representative of the stalked bacteria associated with a haloalkaliphilic cyanobacterium. Based on phylogenomic indices and phenotypic data, it is proposed to evolve two novel families fam. nov. and fam. nov. out of the current family . In addition, it is proposed to place the first two families in the novel order ord. nov. and novel order ord. nov. is proposed to accommodate the family .

Funding
This study was supported by the:
  • Российский Фонд Фундаментальных Исследований (РФФИ) (Award 18-04-00236)
    • Principle Award Recipient: VadimKevbrin
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004614
2020-12-22
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/1/ijsem004614.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004614&mimeType=html&fmt=ahah

References

  1. Loeffler F. Weitere Untersuchungen über die Beizung und Färbung der Geisseln bei den Bakterien. Zentralbl Bakteriol Parasitenkd 1890; 7:625–639
    [Google Scholar]
  2. Abraham W-R, Rohde M, Bennasar A. The family Caulobacteraceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes – Alphaproteobacteria and Betaproteobacteria, 4th ed. Berlin Heidelberg: Springer-Verlag; 2014 pp 179–205
    [Google Scholar]
  3. Abraham W-R, Rohde M. The family Hyphomonadaceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes – Alphaproteobacteria and Betaproteobacteria, 4th ed. Berlin Heidelberg: Springer-Verlag; 2014. pp 283–299
    [Google Scholar]
  4. Staley JT, Konopka AE, Dalmasso JP. Spatial and temporal distribution of Caulobacter spp. in two mesotrophic lakes. FEMS Microbiol Lett 1987; 45:1–6 [View Article]
    [Google Scholar]
  5. Henrici AT, Johnson DE. Studies of freshwater bacteria: II. stalked bacteria, a new order of Schizomycetes . J Bacteriol 1935; 30:3–4 [View Article][PubMed]
    [Google Scholar]
  6. Stahl DA, Key R, Flesher B, Smit J. The phylogeny of marine and freshwater caulobacters reflects their habitat. J Bacteriol 1992; 174:2193–2198 [View Article][PubMed]
    [Google Scholar]
  7. Lee K-B, Liu C-T, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005; 55:1907–1919 [View Article][PubMed]
    [Google Scholar]
  8. Abraham W-R, Rohde M. Hyphomonadaceae Lee, Liu, Anzai, Kim, Aono and Oyaizu 2005, 1915VP. Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc., in association with Bergey’s Manual Trust; 2019
    [Google Scholar]
  9. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  10. Kevbrin VV. Isolation and cultivation of alkaliphiles. In Mamo G, Mattiasson B. (editors) Alkaliphiles in Biotechnology. Advances in Biochemical Engineering and Biotechnology 172 Nature Switzerland AG: Springer; 2020 pp 53–84
    [Google Scholar]
  11. Samylina OS, Sapozhnikov FV, Gainanova OY, Ryabova AV, Nikitin MA et al. Algo-bacterial communities of the Kulunda steppe (Altai region, Russia) soda lakes. Microbiology 2014; 83:849–860 [View Article]
    [Google Scholar]
  12. Kevbrin V, Boltyanskaya Y, Grouzdev D, Koziaeva V, Park M et al. Natronospirillum operosum gen. nov., sp. nov., a haloalkaliphilic satellite isolated from decaying biomass of a laboratory culture of cyanobacterium Geitlerinema sp. and proposal of Natronospirillaceae fam. nov., Saccharospirillaceae fam. nov. and Gynuellaceae fam. nov. Int J Syst Evol Microbiol 2020; 70:511–521 [View Article][PubMed]
    [Google Scholar]
  13. Boltyanskaya YuV, Kevbrin VV. Trophic interactions of proteolytic bacteria Proteinivorax tanatarense in an alkaliphilic microbial community. Microbiology 2016; 85:481–487
    [Google Scholar]
  14. Jin L, Ko S-R, Lee CS, Ahn C-Y, Oh H-M et al. Asprobacter aquaticus gen. nov., sp. nov., a prosthecate alphaproteobacterium isolated from fresh water. Int J Syst Evol Microbiol 2017; 67:4443–4448 [View Article][PubMed]
    [Google Scholar]
  15. Cho Y-J, Yi H, Seo B, Cho KH, Chun J. Fretibacter rubidus gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013; 63:4633–4638 [View Article][PubMed]
    [Google Scholar]
  16. Alain K, Tindall BJ, Intertaglia L, Catala P, Lebaron P. Hellea balneolensis gen. nov., sp. nov., a prosthecate alphaproteobacterium from the Mediterranean Sea. Int J Syst Evol Microbiol 2008; 58:2511–2519 [View Article][PubMed]
    [Google Scholar]
  17. Schlesner H, Bartels C, Sittig M, Dorsch M, Stackebrandt E. Taxonomic and phylogenetic studies on a new taxon of budding, hyphal Proteobacteria, Hirschia baltica gen. nov., sp. nov. Int J Syst Bacteriol 1990; 40:443–451 [View Article][PubMed]
    [Google Scholar]
  18. Jung JY, Kim JM, Jin HM, Kim SY, Park W et al. Litorimonas taeanensis gen. nov., sp. nov., isolated from a sandy beach. Int J Syst Evol Microbiol 2011; 61:1534–1538 [View Article][PubMed]
    [Google Scholar]
  19. Krieg NR, Padgett PJ. Phenotypic and physiological characterization methods. In Rainey F, Oren A. (editors) Methods in Microbiology. Taxonomy of Prokaryotes 38 Academic Press; 2011 pp 15–60
    [Google Scholar]
  20. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  21. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  22. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article][PubMed]
    [Google Scholar]
  23. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article][PubMed]
    [Google Scholar]
  24. Hoang DT, Vinh LS, Flouri T, Stamatakis A, von Haeseler A et al. MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation. BMC Evol Biol 2018; 18:11 [View Article][PubMed]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  26. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: DE: MIDI Inc; 1990
    [Google Scholar]
  28. Abraham W-R, Strömpl C, Bennasar A, Vancanneyt M, Snauwaert C et al. Phylogeny of Maricaulis Abraham, et al. 1999 and proposal of Maricaulis virginensis sp. nov., M. parjimensis sp. nov., M. washingtonensis sp. nov. and M. salignorans sp. nov.. Int J Syst Evol Microbiol 2002:2191–2201
    [Google Scholar]
  29. Zhang X-Y, Li G-W, Wang C-S, Zhang Y-J, Xu X-W et al. Marinicauda pacifica gen. nov., sp. nov., a prosthecate alphaproteobacterium of the family Hyphomonadaceae isolated from deep seawater. Int J Syst Evol Microbiol 2013; 63:2248–2253 [View Article][PubMed]
    [Google Scholar]
  30. Lee K, Lee HK, Choi T-H, Cho J-C. Robiginitomaculum antarcticum gen. nov., sp. nov., a member of the family Hyphomonadaceae, from Antarctic seawater. Int J Syst Evol Microbiol 2007; 57:2595–2599 [View Article][PubMed]
    [Google Scholar]
  31. Park S, Yoon J-H. Hirschia litorea sp. nov., isolated from seashore sediment, and emended description of the genus Hirschia . Int J Syst Evol Microbiol 2013; 63:1684–1689 [View Article][PubMed]
    [Google Scholar]
  32. Abraham W-R, Lünsdorf H, Vancanneyt M, Smit J. Cauliform bacteria lacking phospholipids from an abyssal hydrothermal vent: proposal of Glycocaulis abyssi gen. nov., sp. nov., belonging to the family Hyphomonadaceae . Int J Syst Evol Microbiol 2013; 63:2207–2215 [View Article][PubMed]
    [Google Scholar]
  33. Lv X-L, Xie B-S, Cai M, Geng S, Tang Y-Q et al. Glycocaulis albus sp. nov., a moderately halophilic dimorphic prosthecate bacterium isolated from petroleum-contaminated saline soil. Int J Syst Evol Microbiol 2014; 64:3181–3187 [View Article][PubMed]
    [Google Scholar]
  34. Geng S, Pan X-C, Mei R, Wang Y-N, Liu X-Y et al. Glycocaulis alkaliphilus sp. nov., a dimorphic prosthecate bacterium isolated from crude oil. Int J Syst Evol Microbiol 2015; 65:838–844 [View Article][PubMed]
    [Google Scholar]
  35. Nichols BW. Separation of the lipids of photosynthetic tissues: improvements in analysis by thin-layer chromatography. Biochim Biophys Acta 1963; 70:417–422 [View Article][PubMed]
    [Google Scholar]
  36. Benning C, Huang ZH, Gage DA. Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation. Arch Biochem Biophys 1995; 317:103–111 [View Article][PubMed]
    [Google Scholar]
  37. Kates M. Techniques of lipidology: Isolation, analysis and identification of lipids. In Work TS, Work E. (editors) Laboratory Techniques in Biochemistry and Molecular Biology 3 Amsterdam: North-Holland Publishing Company; 1972 pp 267–610
    [Google Scholar]
  38. Strömpl C, Hold GL, Lünsdorf H, Graham J, Gallacher S et al. Oceanicaulis alexandrii gen. nov., sp. nov., a novel stalked bacterium isolated from a culture of the dinoflagellate Alexandrium tamarense (Lebour) Balech. Int J Syst Evol Microbiol 2003; 53:1901–1906 [View Article][PubMed]
    [Google Scholar]
  39. Chen M-H, Sheu S-Y, Chen CA, Wang J-T, Chen W-M. Oceanicaulis stylophorae sp. nov., isolated from the reef-building coral Stylophora pistillata . Int J Syst Evol Microbiol 2012; 62:2241–2246 [View Article][PubMed]
    [Google Scholar]
  40. Collins MD. Analysis of isoprenoid quinones. Methods Microbiol 1985; 18:329–366
    [Google Scholar]
  41. Williams KP, Sobral BW, Dickerman AW. A robust species tree for the Alphaproteobacteria . J Bacteriol 2007; 189:4578–4586 [View Article][PubMed]
    [Google Scholar]
  42. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improve taxonomic classification of Alphaproteobacteria . Front Microbiol 2020; 11:468 [View Article][PubMed]
    [Google Scholar]
  43. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  44. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  45. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Ciufo S et al. Prokaryotic Genome Annotation Pipeline. The NCBI Handbook, 2nd ed. MD: Bethesda, NCBI: 2013
    [Google Scholar]
  46. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2020; 36:925–1927
    [Google Scholar]
  47. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article][PubMed]
    [Google Scholar]
  48. Grouzdev DS, Rysina MS, Bryantseva IA, Gorlenko VM, Gaisin VA. Draft genome sequences of 'Candidatus Chloroploca asiatica' and 'Candidatus Viridilinea mediisalina', candidate representatives of the Chloroflexales order: phylogenetic and taxonomic implications. Stand Genomic Sci 2018; 13:24 [View Article][PubMed]
    [Google Scholar]
  49. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  50. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article][PubMed]
    [Google Scholar]
  51. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  52. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article][PubMed]
    [Google Scholar]
  53. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article][PubMed]
    [Google Scholar]
  54. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  55. Zhao H, Zhang C, Wu Y, Zhang X, Rong Q et al. Thalassorhabdomicrobium marinisediminis gen. nov., sp. nov., a member of the family Hyphomonadaceae isolated from the Bohai Sea. Int J Syst Evol Microbiol 2019; 69:1794–1799 [View Article][PubMed]
    [Google Scholar]
  56. Asem MD, Salam N, Zheng W, Liao L-H, Zhang X-T et al. Vitreimonas flagellata gen. nov., sp. nov., a novel member of the family Hyphomonadaceae isolated from an activated sludge sample. Int J Syst Evol Microbiol 2020; 70:2632–2639 [View Article][PubMed]
    [Google Scholar]
  57. Moore RL, Weiner RM, Gebers R. Notes: genus Hyphomonas Pongratz 1957 nom. rev. emend., Hyphomonas polymorpha Pongratz 1957 nom. rev. emend., and Hyphomonas neptunium (Leifson 1964) comb. nov. emend. (Hyphomicrobium neptunium). Int J Syst Bacteriol 1984; 34:71–73 [View Article]
    [Google Scholar]
  58. Quan Z-X, Zeng D-N, Xiao Y-P, Roh SW, Nam Y-D et al. Henriciella marina gen. nov., sp. nov., a novel member of the family Hyphomonadaceae isolated from the East Sea. J Microbiol 2009; 47:156–161 [View Article][PubMed]
    [Google Scholar]
  59. Kang HS, Lee SD. Ponticaulis koreensis gen. nov., sp. nov., a new member of the family Hyphomonadaceae isolated from seawater. Int J Syst Evol Microbiol 2009; 59:2951–2955 [View Article][PubMed]
    [Google Scholar]
  60. Fukui Y, Abe M, Kobayashi M, Saito H, Oikawa H et al. Algimonas porphyrae gen. nov., sp. nov., a member of the family Hyphomonadaceae, isolated from the red alga Porphyra yezoensis . Int J Syst Evol Microbiol 2013; 63:314–320 [View Article][PubMed]
    [Google Scholar]
  61. Deng W, Zhang Y, Xie X, Zhao Z, Fu Y. Euryhalocaulis caribicus gen. nov., sp. nov., a new member [corrected] of the family Hyphomonadaceae isolated from the Caribbean Sea. Curr Microbiol 2013; 66:606–612 [View Article][PubMed]
    [Google Scholar]
  62. Sun C, Wang R-J, Su Y, Fu G-Y, Zhao Z et al. Hyphobacterium vulgare gen. nov., sp. nov., a novel alphaproteobacterium isolated from seawater. Int J Syst Evol Microbiol 2017; 67:1169–1176 [View Article][PubMed]
    [Google Scholar]
  63. Abraham WR, Strömpl C, Meyer H, Lindholst S, Moore ER et al. Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter . Int J Syst Bacteriol 1999; 49 Pt 3:1053–1073 [View Article][PubMed]
    [Google Scholar]
  64. Abraham W-R, Strömpl C, Vancanneyt M, Bennasar A, Swings J et al. Woodsholea maritima gen. nov., sp. nov., a marine bacterium with a low diversity of polar lipids. Int J Syst Evol Microbiol 2004; 54:1227–1234 [View Article][PubMed]
    [Google Scholar]
  65. Garrity GM, Bell JA, Lilburn TG. Taxonomic outline of the prokaryotes. Bergey’s Manual of Systematic Bacteriology, 2nd ed. Release 4.0. New York: Springer-Verlag; 2003
    [Google Scholar]
  66. Fukui Y, Kobayashi M, Saito H, Oikawa H, Yano Y et al. Algimonas ampicilliniresistens sp. nov., isolated from the red alga Porphyra yezoensis, and emended description of the genus Algimonas . Int J Syst Evol Microbiol 2013; 63:4407–4412 [View Article][PubMed]
    [Google Scholar]
  67. Abraham W-R, de Carvalho MP, da Costa Neves TSP, Memoria MT, Tartuci IT et al. Proposal of Henriciella barbarensis sp. nov. and Henriciella algicola sp. nov., stalked species of the genus and emendation of the genus Henriciella . Int J Syst Evol Microbiol 2017; 67:2804–2810 [View Article][PubMed]
    [Google Scholar]
  68. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV, Kim S-J, Rhee S-K. Litorimonas cladophorae sp. nov., a new alphaproteobacterium isolated from the Pacific green alga Cladophora stimpsoni, and emended descriptions of the genus Litorimonas and Litorimonas taeaensis . Antonie van Leeuwenhoek 2013; 103:1263–1269 [View Article][PubMed]
    [Google Scholar]
  69. Jeong SE, Jeon SH, Chun BH, Kim D-W, Jeon CO. Marinicauda algicola sp. nov., isolated from a marine red alga Rhodosorus marinus . Int J Syst Evol Microbiol 2017; 67:3423–3427 [View Article][PubMed]
    [Google Scholar]
  70. Cai H, Shi Y, Wang Y, Cui H, Jiang H. Aquidulcibacter paucihalophilus gen. nov., sp. nov., a novel member of family Caulobacteraceae isolated from cyanobacterial aggregates in a eutrophic lake. Antonie van Leeuwenhoek 2017; 110:1169–1177 [View Article]
    [Google Scholar]
  71. Barnier C, Clerissi C, Lami R, Intertaglia L, Lebaron P et al. Description of Palleronia rufa sp. nov., a biofilm-forming and AHL-producing Rhodobacteraceae, reclassification of Hwanghaeicola aestuarii as Palleronia aestuarii comb. nov., Maribius pontilimi as Palleronia pontilimi comb. nov., Maribius salinus as Palleronia salina comb. nov., Maribius pelagius as Palleronia pelagia comb. nov. and emended description of the genus Palleronia . Syst Appl Microbiol 2020; 43:126018 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004614
Loading
/content/journal/ijsem/10.1099/ijsem.0.004614
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error