1887

Abstract

A polyphasic taxonomic approach was used to characterize a novel bacterium, designated as strain HDW20, isolated from the intestine of the dark diving beetle . The isolate was Gram-stain-positive, facultatively anaerobic, non-motile, coccus-shaped, and formed pale orange colonies. Phylogenetic analysis based on 16S rRNA gene sequences and genome sequences showed that the isolate belonged to the genus in the phylum and was closely related to SST-39, JCM 17540, and NSG39, with the highest 16S rRNA gene sequence similarity of 98.5 % and a highest average nucleotide identity (ANI) value of 80.6 %. The major cellular fatty acids were C 9 and anteiso-C. The main respiratory quinone was MK-9 (H). The major polar lipid components were phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G+C content was 69.0 %. The isolate contains ʟʟ-diaminopimelic acid, ʟ-alanine, and ʟ-lysine as amino acid components, and ribose, glucose, and galactose as sugar components of the cell wall peptidoglycan. The results of phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses suggested that strain HDW20 represents a novel species within the genus . We propose the name sp. nov. The type strain is HDW20 (=KACC 21348=KCTC 49324=JCM 33674).

Funding
This study was supported by the:
  • Ministry of Environment (KR) (Award NIBR201801106)
    • Principle Award Recipient: Jin-WooBae
  • Ministry of Education (Award NRF-2019R1A6A3A01096031)
    • Principle Award Recipient: Dong-WookHyun
  • Ministry of Science and ICT (KR) (Award NRF-2020R1A2C3012797)
    • Principle Award Recipient: Jin-WooBae
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004588
2020-12-08
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/1/ijsem004588.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004588&mimeType=html&fmt=ahah

References

  1. Maszenan AM, Seviour RJ, Patel BK, Schumann P, Rees GN. Tessaracoccus bendigoensis gen. nov., sp. nov., a Gram-positive coccus occurring in regular packages or tetrads, isolated from activated sludge biomass. Int J Syst Bacteriol 1999; 49 Pt 2:459–468 [View Article][PubMed]
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020 23 Jul 2020 [View Article][PubMed]
    [Google Scholar]
  3. Cai M, Wang L, Cai H, Li Y, Wang Y-N et al. Salinarimonas ramus sp. nov. and Tessaracoccus oleiagri sp. nov., isolated from a crude oil-contaminated saline soil. Int J Syst Evol Microbiol 2011; 61:1767–1775 [View Article][PubMed]
    [Google Scholar]
  4. Zhou L-Y, Zhang J-Y, Chen X-Y, Du Z-J, Mu D-S. Tessaracoccus antarcticus sp. nov., a rhodopsin-containing bacterium from an Antarctic environment and emended description of the genus Tessaracoccus . Int J Syst Evol Microbiol 2020; 70:1555–1561 [View Article][PubMed]
    [Google Scholar]
  5. Tak EJ, Kim HS, Lee J-Y, Kang W, Hyun D-W et al. Tessaracoccus aquimaris sp. nov., isolated from the intestine of a Korean rockfish, Sebastes schlegelii, from a marine aquaculture pond. Int J Syst Evol Microbiol 2018; 68:1065–1072 [View Article][PubMed]
    [Google Scholar]
  6. Thongphrom C, Kim J-H, Bora N, Kim W. Tessaracoccus arenae sp. nov., isolated from sea sand. Int J Syst Evol Microbiol 2017; 67:2008–2013 [View Article][PubMed]
    [Google Scholar]
  7. Srinivasan S, Sundararaman A, Lee S-S. Tessaracoccus defluvii sp. nov., isolated from an aeration tank of a sewage treatment plant. Antonie van Leeuwenhoek 2017; 110:1–9 [View Article][PubMed]
    [Google Scholar]
  8. Lee DW, Lee SD. Tessaracoccus flavescens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2008; 58:785–789 [View Article][PubMed]
    [Google Scholar]
  9. Kumari R, Singh P, Schumann P, Lal R. Tessaracoccus flavus sp. nov., isolated from the drainage system of a lindane-producing factory. Int J Syst Evol Microbiol 2016; 66:1862–1868 [View Article][PubMed]
    [Google Scholar]
  10. Puente-Sánchez F, Sánchez-Román M, Amils R, Parro V. Tessaracoccus lapidicaptus sp. nov., an actinobacterium isolated from the deep subsurface of the Iberian pyrite belt. Int J Syst Evol Microbiol 2014; 64:3546–3552 [View Article][PubMed]
    [Google Scholar]
  11. Kämpfer P, Lodders N, Warfolomeow I, Busse H-J. Tessaracoccus lubricantis sp. nov., isolated from a metalworking fluid. Int J Syst Evol Microbiol 2009; 59:1545–1549 [View Article][PubMed]
    [Google Scholar]
  12. Li G-D, Chen X, Li Q-Y, Xu F-J, Qiu S-M, GD L, FJ X et al. Tessaracoccus rhinocerotis sp. nov., isolated from the faeces of Rhinoceros unicornis . Int J Syst Evol Microbiol 2016; 66:922–927 [View Article][PubMed]
    [Google Scholar]
  13. Chaudhary DK, Kim J. Tessaracoccus terricola sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2018; 68:529–535 [View Article][PubMed]
    [Google Scholar]
  14. Ben Ami E, Yuval B, Jurkevitch E. Manipulation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance. ISME J 2010; 4:28–37 [View Article][PubMed]
    [Google Scholar]
  15. Ryu J-H, Ha E-M, Lee W-J. Innate immunity and gut-microbe mutualism in Drosophila . Dev Comp Immunol 2010; 34:369–376 [View Article][PubMed]
    [Google Scholar]
  16. Yun J-H, Roh SW, Whon TW, Jung M-J, Kim M-S et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 2014; 80:5254–5264 [View Article][PubMed]
    [Google Scholar]
  17. Habineza P, Muhammad A, Ji T, Xiao R, Yin X et al. The Promoting Effect of Gut Microbiota on Growth and Development of Red Palm Weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) by Modulating Its Nutritional Metabolism. Front Microbiol 2019; 10:1212 [View Article][PubMed]
    [Google Scholar]
  18. Engel P, Moran NA. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 2013; 37:699–735 [View Article][PubMed]
    [Google Scholar]
  19. Crowson RA. The biology of the Coleoptera Academic Press; 2013
    [Google Scholar]
  20. Woo S, Song I, Cha HJ. Fast and Facile Biodegradation of Polystyrene by the Gut Microbial Flora of Plesiophthalmus davidis Larvae. Appl Environ Microbiol 2020; 86: 01 09 2020 [View Article][PubMed]
    [Google Scholar]
  21. Ceja-Navarro JA, Karaoz U, Bill M, Hao Z, White RA et al. Gut anatomical properties and microbial functional assembly promote lignocellulose deconstruction and colony subsistence of a wood-feeding beetle. Nat Microbiol 2019; 4:864–875 [View Article][PubMed]
    [Google Scholar]
  22. Sato Shun'ichi, Inoda T, Niitsu S, Kubota S, Goto Y et al. Asymmetric larval head and mandibles of Hydrophilus acuminatus (Insecta: Coleoptera, Hydrophilidae): Fine structure and embryonic development. Arthropod Struct Dev 2017; 46:824–842 [View Article][PubMed]
    [Google Scholar]
  23. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31:575–580 [View Article][PubMed]
    [Google Scholar]
  24. Lane D. 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics 1991115–175
    [Google Scholar]
  25. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  26. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  29. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  31. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  32. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I, SI N et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  33. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  34. Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 2019; 47:D666–D677 [View Article][PubMed]
    [Google Scholar]
  35. Ha SM, Kim CK, Roh J, Byun JH, Yang SJ et al. Application of the whole genome-based bacterial identification system, TrueBac ID, using clinical isolates that were not identified with three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems. Ann Lab Med 2019; 39:530–536 [View Article][PubMed]
    [Google Scholar]
  36. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article][PubMed]
    [Google Scholar]
  37. Benson H. Microbiological application. Laboratory manual in General Microbiology Dubuque, Melbourn. Oxford: Wan C. Publishers; 1994.
    [Google Scholar]
  38. Goszczynska T, Serfontein JJ. Milk–Tween agar, a semiselective medium for isolation and differentiation of Pseudomonas syringae pv. syringae, Pseudomonas syringae pv. phaseolicola and Xanthomonas axonopodis pv. phaseoli. J Microbiol Methods 1998; 32:65–72 [View Article]
    [Google Scholar]
  39. Teather RM, Wood PJ. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 1982; 43:777–780 [View Article][PubMed]
    [Google Scholar]
  40. MIDI Sherlock Microbial Identification System Operating Manual, version 3.0 MIDI, Inc Newark, DE: 1999
    [Google Scholar]
  41. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI technical note 101. Newark, DE: MIDI inc; 1990
    [Google Scholar]
  42. Bousfield GR, Sugino H, Ward DN. Demonstration of a COOH-terminal extension on equine lutropin by means of a common acid-labile bond in equine lutropin and equine chorionic gonadotropin. J Biol Chem 1985; 260:9531–9533[PubMed]
    [Google Scholar]
  43. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article][PubMed]
    [Google Scholar]
  44. Xin H, Itoh T, Zhou P, Suzuki K, Kamekura M et al. Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 2000; 50 Pt 3:1297–1303 [View Article][PubMed]
    [Google Scholar]
  45. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  46. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316354 [View Article][PubMed]
    [Google Scholar]
  47. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004588
Loading
/content/journal/ijsem/10.1099/ijsem.0.004588
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error