1887

Abstract

A Gram-stain-positive, facultative anaerobic, rod-shaped bacteria isolated from the small intestine of a mini pig was designated as strain YH-lac9. 16S rRNA gene sequence analysis revealed that the strain belongs to the genus and is closely related to JCM 17472, JCM 15042 and JCM 13927, with 97.6, 96.2 and 95.7 % sequence similarity, respectively. Analysis of housekeeping gene sequences ( and ) revealed that the strain formed a sub-cluster with , supporting the results of 16S rRNA gene sequences analysis. The average nucleotide identity value for YH-lac9 and the most closely related strain is 74.1 %. The main fatty acids are Cω9, summed feature 7, C and summed feature 8. The G+C content of the genomic DNA is 37.8 mol%. In view of its chemotaxonomic, phenotypic and phylogenetic properties, YH-lac9 (=KCTC 25005=JCM 33997) represents a novel taxon. The name sp. nov. is proposed.

Funding
This study was supported by the:
  • Young Hyo Chang , the Ministry of Science, ICT, and Future Planning
  • Ho-Yong Park , National Research Council of Science and Technology , (Award CAP-18-06-KRIBB)
  • Young Hyo Chang , the National Research Foundation of Korea , (Award 2013M3A9A5076601)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004560
2020-11-11
2020-11-25
Loading full text...

Full text loading...

References

  1. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B et al. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 2006; 103:15611–15616 [CrossRef][PubMed]
    [Google Scholar]
  2. Beijerinck MW. Sur les ferments lactiques de l'industrie. Archives Néerlandaises des Sciences Exactes et Naturelles (Section 2) 1901; 6:212–243
    [Google Scholar]
  3. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782–2858 [CrossRef][PubMed]
    [Google Scholar]
  4. Arena ME, Landete JM, Manca de Nadra MC, Pardo I, Ferrer S. Factors affecting the production of putrescine from agmatine by Lactobacillus hilgardii xB isolated from wine. J Appl Microbiol 2008; 105:158–165 [CrossRef][PubMed]
    [Google Scholar]
  5. Gänzle MG. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr Opin Food Sci 2015; 2:106–117 [CrossRef]
    [Google Scholar]
  6. Zheng J, Ruan L, Sun M, Gänzle M. A genomic view of lactobacilli and pediococci demonstrates that phylogeny matches ecology and physiology. Appl Environ Microbiol 2015; 81:7233–7243 [CrossRef][PubMed]
    [Google Scholar]
  7. Zotta T, Ricciardi A, Ianniello RG, Storti LV, Glibota NA et al. Aerobic and respirative growth of heterofermentative lactic acid bacteria: a screening study. Food Microbiol 2018; 76:117–127 [CrossRef][PubMed]
    [Google Scholar]
  8. Oki K, Kudo Y, Watanabe K. Lactobacillus saniviri sp. nov. and Lactobacillus senioris sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2012; 62:601–607 [CrossRef][PubMed]
    [Google Scholar]
  9. Farrow JAE, Phillips BA, Collins MD. Nucleic acid studies on some heterofermentative lactobacilli: description of Lactobacillus malefermentans sp.nov. and Lactobacillus parabuchneri sp.nov. FEMS Microbiol Lett 1988; 55:163–168 [CrossRef]
    [Google Scholar]
  10. Jung MY, Kim JS, Paek WK, Styrak I, Park IS et al. Description of Lysinibacillus sinduriensis sp. nov., and transfer of Bacillus massiliensis and Bacillus odysseyi to the genus Lysinibacillus as Lysinibacillus massiliensis comb. nov. and Lysinibacillus odysseyi comb. nov. with emended description of the genus Lysinibacillus. Int J Syst Evol Microbiol 2012; 62:2347–2355 [CrossRef][PubMed]
    [Google Scholar]
  11. Paek J, Lee MH, Kim BC, Sang BI, Paek WK et al. Clostridium vulturis sp. nov., isolated from the intestine of the cinereous vulture (Aegypius monachus). Antonie van Leeuwenhoek 2014; 106:577–583 [CrossRef][PubMed]
    [Google Scholar]
  12. Chang Y-H, Jung MY, Park I-S, Oh H-M. Sporolactobacillus vineae sp. nov., a spore-forming lactic acid bacterium isolated from vineyard soil. Int J Syst Evol Microbiol 2008; 58:2316–2320 [CrossRef][PubMed]
    [Google Scholar]
  13. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45:240–245 [CrossRef][PubMed]
    [Google Scholar]
  14. Lei X, Sun G, Xie J, Wei D. Lactobacillus curieae sp. nov., isolated from stinky tofu brine. Int J Syst Evol Microbiol 2013; 63:2501–2505 [CrossRef][PubMed]
    [Google Scholar]
  15. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005; 151:2141–2150 [CrossRef][PubMed]
    [Google Scholar]
  16. Kimura M. The Neutral Theory of Molecular Evolution NY: Cambridge: Cambridge University; 1983
    [Google Scholar]
  17. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.5 University of Washington: Distributed by The Author. Department of Genome Sciences, SEA; 1993
    [Google Scholar]
  18. Jeon YS, Chung H, Park S, Hur I, Lee JH et al. jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 2005; 21:3171–3173 [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  21. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969; 18:1–32 [CrossRef]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  23. Michelini S, Modesto M, Filippini G, Spiezio C, Sandri C et al. Bifidobacterium aerophilum sp. nov., Bifidobacterium avesanii sp. nov. and Bifidobacterium ramosum sp. nov.: three novel taxa from the faeces of cotton-top tamarin (Saguinus oedipus L.). Syst Appl Microbiol 2016; 39:229–236 [CrossRef][PubMed]
    [Google Scholar]
  24. Paek J, Shin Y, Kook JK, Chang YH. Blautia argi sp. nov., a new anaerobic bacterium isolated from dog faeces. Int J Syst Evol Microbiol 2019; 69:33–38 [CrossRef][PubMed]
    [Google Scholar]
  25. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [CrossRef][PubMed]
    [Google Scholar]
  26. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [CrossRef][PubMed]
    [Google Scholar]
  27. Paek J, Shin Y, Kim JS, Kim H, Kook JK et al. Description of Absiella argi gen. nov., sp. nov., and transfer of Eubacterium dolichum and Eubacterium tortuosum to the genus Absiella as Absiella dolichum comb. nov. and Absiella tortuosum comb. nov. Anaerobe 2017; 48:70–75 [CrossRef][PubMed]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatog-Raphy of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: Midi Inc; 1990
    [Google Scholar]
  29. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007; 57:2777–2789 [CrossRef][PubMed]
    [Google Scholar]
  30. Torriani S, Felis GE, Dellaglio F. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl Environ Microbiol 2001; 67:3450–3454 [CrossRef][PubMed]
    [Google Scholar]
  31. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  32. Watanabe K, Fujimoto J, Tomii Y, Sasamoto M, Makino H et al. Lactobacillus kisonensis sp. nov., Lactobacillus otakiensis sp. nov., Lactobacillus rapi sp. nov. and Lactobacillus sunkii sp. nov., heterofermentative species isolated from sunki, a traditional Japanese pickle. Int J Syst Evol Microbiol 2009; 59:754–760 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004560
Loading
/content/journal/ijsem/10.1099/ijsem.0.004560
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error