1887

Abstract

Two novel actinobacteria, designated strains GY16 and T44, were isolated from the leaves and rhizosphere soil of , respectively. A polyphasic approach was used for determining their taxonomic position. Results of 16S rRNA gene sequence analysis indicated that strain GY16 exhibited highest similarities to subsp. CGMCC 4.1593 (98.82 %), KCTC 19241 (98.76 %), NRRL B-16523 (98.69 %), KACC 20186 (98.69 %) and NBRC 13407 (98.69 %), and strain T44 showed 99.2, 99.1, 99.1 and <98.7 % sequence similarities to CGMCC 4.1452, subsp. DSM 40028, DSM 40539 and other species, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain GY16 formed an independent subclade, which indicated that strain GY16 should belong to a potential novel species; and strain T44 was closely related to CGMCC 4.1452, subsp. DSM 40028, DSM 40539 and DSM 40224. However, the multilocus sequence analysis evolutionary distance, average nucleotide identity and DNA–DNA hybridization values between closely related relatives were far from the species-level thresholds. In addition, phenotypic and chemotaxonomic characteristics further confirmed that strains GY16 and T44 belonged to two distinct species. Based on these results, it is concluded that the isolated strains represent novel species within the genus , for which the names sp. nov. (type strain GY16=CICC 24807=KCTC 49326) and sp. nov. (type strain T44=CICC 24819=JCM 33918) are proposed.

Funding
This study was supported by the:
  • , State Forestry and Grassland Bureau , (Award 2018-01)
  • , Key Technology R&D Program of Changsha , (Award kq1901145)
  • , Forestry Science and Technology Project of Hunan Province , (Award XLK201825)
  • , Major Science and Technology Program of Hunan Province , (Award 2017NK1014)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004556
2020-11-11
2021-01-15
Loading full text...

Full text loading...

References

  1. Koshy A, Dhevendaran K, Georgekutty MI, Natarajan P. l-Asparaginase activity in Streptomyces plicatus isolated from the alimentary canal of the fish, Gerres filamentous (Cuvier). J Mar Biotechnol 1997; 5:181–185
    [Google Scholar]
  2. Gallagher KA, Fenical W, Jensen PR. Hybrid isoprenoid secondary metabolite production in terrestrial and marine actinomycetes. Curr Opin Biotechnol 2010; 21:794–800 [CrossRef][PubMed]
    [Google Scholar]
  3. Kroiss J, Kaltenpoth M, Schneider B, Schwinger MG, Hertweck C et al. Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol 2010; 6:261–263 [CrossRef][PubMed]
    [Google Scholar]
  4. Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J et al. Bacterial protection of beetle-fungus mutualism. Science 2008; 322:63 [CrossRef][PubMed]
    [Google Scholar]
  5. Blodgett JAV, DC O, Cao S, Currie CR, Kolter R et al. Common Biosynthetic Origins for Polycyclic Tetramate Macrolactams from Phylogenetically Diverse Bacteria 107 USA: Proc. Natl Acad Sci; 2010 pp 11692–11697
    [Google Scholar]
  6. Shomura T. Screening for new products of new species of Dactylosporangium and other actinomycetes. Actinomycetologica 1993; 7:88–98 [CrossRef]
    [Google Scholar]
  7. Mo P, Yu YZ, Zhao JR, Gao J. Streptomyces xiangtanensis sp. nov., isolated from a manganese-contaminated soil. Antonie van Leeuwenhoek 2017; 110:297–304 [CrossRef][PubMed]
    [Google Scholar]
  8. Mo P, Zhao JR, Li KQ, Tang XK, Gao J. Streptomyces manganisoli sp. nov., a novel actinomycete isolated from manganese-contaminated soil. Int J Syst Evol Microbiol 2018; 68:1890–1895 [CrossRef][PubMed]
    [Google Scholar]
  9. Tang XK, Zhao JR, Li KQ, Chen Z, Sun YD et al. Streptomyces cyaneochromogenes sp. nov., a blue pigment-producing actinomycete from manganese-contaminated soil. Int J Syst Evol Microbiol 2019; 69:2202–2207 [CrossRef][PubMed]
    [Google Scholar]
  10. Li K, Tang XK, Zhao JR, Guo YH, Tang YJ et al. Streptomyces cadmiisoli sp. nov., a novel actinomycete isolated from cadmium-contaminated soil. Int J Syst Evol Microbiol 2019; 69:1024–1029 [CrossRef][PubMed]
    [Google Scholar]
  11. Lin YB, Wang XY, Li HF, Wang NN, Wang HX et al. Streptomyces zinciresistens sp. nov., a zinc-resistant actinomycete isolated from soil from a copper and zinc mine. Int J Syst Evol Microbiol 2011; 61:616–620 [CrossRef][PubMed]
    [Google Scholar]
  12. Guo JK, Lin YB, Zhao ML, Sun R, Wang TT et al. Streptomyces plumbiresistens sp. nov., a lead-resistant actinomycete isolated from lead-polluted soil in north-west China. Int J Syst Evol Microbiol 2009; 59:1326–1330 [CrossRef][PubMed]
    [Google Scholar]
  13. Tatar D, Guven K, Spröer C, Klenk HP, Sahin N. Streptomyces iconiensis sp. nov. and Streptomyces smyrnaeus sp. nov., two halotolerant actinomycetes isolated from a salt lake and saltern. Int J Syst Evol Microbiol 2014; 64:3126–3133 [CrossRef][PubMed]
    [Google Scholar]
  14. Veyisoglu A, Sahin N. Streptomyces hoynatensis sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol 2014; 64:819–826 [CrossRef][PubMed]
    [Google Scholar]
  15. Veyisoglu A, Sahin N. Streptomyces klenkii sp. nov., isolated from deep marine sediment. Antonie van Leeuwenhoek 2015; 107:273–279 [CrossRef][PubMed]
    [Google Scholar]
  16. Zhu H, Jiang S, Yao Q, Wang Y, Chen M et al. Streptomyces fenghuangensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011; 61:2811–2815 [CrossRef][PubMed]
    [Google Scholar]
  17. Shibazaki A, Omoto Y, Kudo T, Yaguchi T, Saito A et al. Streptomyces coacervatus sp. nov., isolated from the intestinal tract of Armadillidium vulgare . Int J Syst Evol Microbiol 2011; 61:1073–1077 [CrossRef][PubMed]
    [Google Scholar]
  18. Promnuan Y, Kudo T, Ohkuma M, Chantawannakul P. Streptomyces chiangmaiensis sp. nov. and Streptomyces lannensis sp. nov., isolated from the South-East Asian stingless bee (Tetragonilla collina). Int J Syst Evol Microbiol 2013; 63:1896–1901 [CrossRef][PubMed]
    [Google Scholar]
  19. He H, Liu C, Zhao J, Li W, Pan T et al. Streptomyces zhaozhouensis sp. nov., an actinomycete isolated from candelabra aloe (Aloe arborescens Mill). Int J Syst Evol Microbiol 2014; 64:1096–1101 [CrossRef][PubMed]
    [Google Scholar]
  20. Li K, Guo YH, Wang JZ, Wang JZ, Zhao JR et al. Streptomyces aquilus sp. nov., a novel actinomycete isolated from a Chinese medicinal plant. Int J Syst Evol Microbiol 2020; 70:1912–1917 [CrossRef][PubMed]
    [Google Scholar]
  21. Han C, Yu Z, Zhao J, Shi H, Hu J et al. Streptomyces triticagri sp. nov. and Streptomyces triticirhizae sp. nov., two novel Actinobacteria isolated from the rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2020; 70:126–138 [CrossRef][PubMed]
    [Google Scholar]
  22. Jin L, Zhao Y, Song W, Duan L, Jiang S et al. Streptomyces inhibens sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2019; 69:688–695 [CrossRef][PubMed]
    [Google Scholar]
  23. Qin S, Li J, Chen H, Zhao Z, Zhu W et al. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 2009; 75:6176–6186 [CrossRef][PubMed]
    [Google Scholar]
  24. Atlas RM, Parks LC. Handbook of Microbiological Media Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  25. Jiang C, Ruan J. Two new species and a new variety of Ampullarella . Acta Microbiol Sin 1982; 22:207–211
    [Google Scholar]
  26. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [CrossRef]
    [Google Scholar]
  27. Ridgway R. Color Standards and Color Nomenclature Washington, DC plate I–LII: Published by the author; 1912 pp 1–43
    [Google Scholar]
  28. LH X, WJ L, Liu ZH, Jiang CL. Actinomycete Systematic-Principle, Methods and Practice Beijing: Science press; 2007
    [Google Scholar]
  29. Ruan J, Huang Y. Rapid Identification and Systematics of Actinobacteria Beijing: Science press; 2011
    [Google Scholar]
  30. MIDI Sherlock Microbial Identification System Operating Manual, Version 6.0 Newark DE: MIDI Inc; 2005
    [Google Scholar]
  31. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [CrossRef]
    [Google Scholar]
  32. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [CrossRef]
    [Google Scholar]
  33. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  34. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, London Minnikin DE. (editors) Chemical Methods in Bacterial Systematics England: Academic Press; 1985 pp 173–199
    [Google Scholar]
  35. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  36. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  37. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York, USA: Wiley; 1991 pp 115–175
    [Google Scholar]
  38. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  39. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  40. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  41. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  42. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [CrossRef]
    [Google Scholar]
  43. Kumar S, Stecher G, Tamura K. mega 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  44. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol 2012; 35:7–18 [CrossRef][PubMed]
    [Google Scholar]
  45. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  46. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  47. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60–14 [CrossRef]
    [Google Scholar]
  48. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  49. Wright F, Bibb MJ. Codon usage in the G+C-rich Streptomyces genome. Gene 1992; 113:55–65 [CrossRef][PubMed]
    [Google Scholar]
  50. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on systematic bacteriology. Report of the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  51. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  52. Grim CJ, Kotewicz ML, Power KA, Gopinath G, Franco AA et al. Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. BMC Genomics 2013; 14:366 [CrossRef][PubMed]
    [Google Scholar]
  53. Bhuyan BK, Owen SP. Rubradirin, a new antibiotic. I. fermentation and biological properties. Antimicrob Agents Chemother 1964; 10:91–96[PubMed]
    [Google Scholar]
  54. Dr. P.D.J.M Wink HZI-Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany, Mail: [email protected] https://www.dsmz.de/collection/catalogue/details/culture/ .
  55. Gordon MA, Lapa EW. Durhamycin, a pentaene antifungal antibiotic from Streptomyces durhamensis sp. n. Appl Microbiol 1966; 14:754–760 [CrossRef][PubMed]
    [Google Scholar]
  56. Nakamura G. Studies on antibiotic actinomycetes. III. on Streptomyces producing A-B-D-ribofuranosylpurine. J Antibiot (Tokyo) Series A 1961; 14:94–97
    [Google Scholar]
  57. Zhang B, Tang S, Yang R, Chen X, Zhang D et al. Streptomyces dangxiongensis sp. nov., isolated from soil of Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2019; 69:2729–2734 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004556
Loading
/content/journal/ijsem/10.1099/ijsem.0.004556
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error