1887

Abstract

A Gram-stain-negative, aerobic, non-spore-forming, non-motile and ovoid or rod-shaped bacterial strain, MYP5, was isolated from seawater in Jeju island of South Korea. MYP5 grew optimally at 30–35 °C and in the presence of 2.0 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that MYP5 fell within the clade enclosed by the type strains of species of the genus , clustering with the type strains of and . MYP5 exhibited the highest 16S rRNA gene sequence similarity value (98.0 %) to the type strain of and similarities of 95.1–97.9 % to the type strains of the other species of the genus . ANI and dDDH values of genomic sequences between MYP5 and the type strains of 22 species of the genus were 66.8–70.5 % and 18.6–27.5 %, respectively. The DNA G+C content of MYP5, determined from the genome sequence, was 46.1 %. MYP5 contained Q-8 as the predominant ubiquinone and C ω7, summed feature 3 (C ω7 and/or C ω6), C and 10-methyl C as the major fatty acids. The major polar lipids of MYP5 were phosphatidylethanolamine and phosphatidylglycerol. Distinguishing phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that MYP5 is separated from species of the genus . On the basis of the data presented, MYP5 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MYP5 (=KCTC 82144=NBRC 114354).

Funding
This study was supported by the:
  • Jung-Hoon Yoon , National Institute of Biological Resources , (Award project on survey of indigenous species of Korea)
  • Young-Ok Kim , National Institute of Fisheries Science , (Award R2020035)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004545
2020-11-06
2020-12-01
Loading full text...

Full text loading...

References

  1. Baumann L, Baumann P, Mandel M, Allen RD. Taxonomy of aerobic marine eubacteria. J Bacteriol 1972; 110:402–429 [CrossRef][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN-List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  3. Ivanova EP, López-Pérez M, Zabalos M, Nguyen SH, Webb HK et al. Ecophysiological diversity of a novel member of the genus Alteromonas, and description of Alteromonas mediterranea sp. nov. Antonie van Leeuwenhoek 2015; 107:119–132 [CrossRef][PubMed]
    [Google Scholar]
  4. Yoon JH, Kim IG, Kang KH, Oh TK, Park YH. Alteromonas marina sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 2003; 53:1625–1630 [CrossRef][PubMed]
    [Google Scholar]
  5. Yoon JH, Yeo SH, Oh TK, Park YH. Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2004; 54:1197–1201 [CrossRef][PubMed]
    [Google Scholar]
  6. Van Trappen S, Tan TL, Yang J, Mergaert J, Swings J. Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol 2004; 54:1157–1163 [CrossRef][PubMed]
    [Google Scholar]
  7. Martínez-Checa F, Béjar V, Llamas I, Del Moral A, Quesada E. Alteromonas hispanica sp. nov., a polyunsaturated-fatty-acid-producing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 2005; 55:2385–2390 [CrossRef][PubMed]
    [Google Scholar]
  8. Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Mollica A et al. Alteromonas genovensis sp. nov., isolated from a marine electroactive biofilm and emended description of Alteromonas macleodii Baumann et al. 1972 (Approved Lists 1980). Int J Syst Evol Microbiol 2008; 58:2589–2596 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen YG, Xiao HD, Tang SK, Zhang YQ, Borrathybay E et al. Alteromonas halophila sp. nov., a new moderately halophilic bacterium isolated from a sea anemone. Antonie van Leeuwenhoek 2009; 96:259–266 [CrossRef][PubMed]
    [Google Scholar]
  10. Ivanova EP, Bowman JP, Lysenko AM, Zhukova NV, Gorshkova NM et al. Alteromonas addita sp. nov. Int J Syst Evol Microbiol 2005; 55:1065–1068 [CrossRef][PubMed]
    [Google Scholar]
  11. Ivanova EP, Ng HJ, Webb HK, Kurilenko VV, Zhukova NV et al. Alteromonas australica sp. nov., isolated from the Tasman Sea. Antonie van Leeuwenhoek 2013; 103:877–884 [CrossRef][PubMed]
    [Google Scholar]
  12. Matsuyama H, Minami H, Sakaki T, Kasahara H, Baba S et al. Alteromonas gracilis sp. nov., a marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol 2015; 65:1498–1503 [CrossRef][PubMed]
    [Google Scholar]
  13. Park S, Kang CH, Won SM, Park JM, Kim BC et al. Alteromonas confluentis sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2015; 55:3603–3608
    [Google Scholar]
  14. Ye MQ, Han JR, Wang C, Du ZJ, MQ Y, ZJ D. Alteromonas sediminis sp. nov., isolated from sediment in a sea cucumber culture pond. Int J Syst Evol Microbiol 2019; 69:1579–1584 [CrossRef][PubMed]
    [Google Scholar]
  15. Barbeyron T, Zonta E, Le Panse S, Duchaud E, Michel G. Alteromonas fortis sp. nov., a non-flagellated bacterium specialized in the degradation of iota-carrageenan, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol 2019; 69:2514–2521 [CrossRef][PubMed]
    [Google Scholar]
  16. Yoon JH, Lee ST, Kim SB, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997; 47:111–114 [CrossRef]
    [Google Scholar]
  17. Yoon JH, Kim H, Kim IG, Kang KH, Park YH. Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 2003; 53:1169–1174 [CrossRef][PubMed]
    [Google Scholar]
  18. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  20. Lee I, Chalita M, Ha SM, Na SI, Yoon SH et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [CrossRef][PubMed]
    [Google Scholar]
  21. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  22. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  23. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  25. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102:2567–2572 [CrossRef][PubMed]
    [Google Scholar]
  26. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  29. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994 pp 121–161
    [Google Scholar]
  30. Moitra S, Pawlowic NC, Hsu FJ, Zhang K. Phosphatidylcholine synthesis through cholinephosphate cytidylyltransferase is dispensable in Leishmania major. Sci Rep 2019; 9:7602 [CrossRef][PubMed]
    [Google Scholar]
  31. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2969–2974 [CrossRef][PubMed]
    [Google Scholar]
  32. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  33. Bruns A, Rohde M, Berthe-Corti L. Muricauda tuestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [CrossRef][PubMed]
    [Google Scholar]
  34. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  35. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184 [CrossRef][PubMed]
    [Google Scholar]
  36. Theodorou MC, Theodorou EC, Kyriakidis DA. Involvement of AtoSC two-component system in Escherichia coli flagellar regulon. Amino Acids 2012; 43:833–844 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004545
Loading
/content/journal/ijsem/10.1099/ijsem.0.004545
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error