1887

Abstract

A group of four psychrotrophic bacterial strains was isolated on James Ross Island (Antarctica) in 2013. All isolates, originating from different soil samples, were collected from the ice-free northern part of the island. They were rod-shaped, Gram-stain-negative, and produced moderately slimy red-pink pigmented colonies on R2A agar. A polyphasic taxonomic approach based on 16S rRNA gene sequencing, whole-genome sequencing, MALDI-TOF MS, rep-PCR analyses, chemotaxonomic methods and extensive biotyping was used to clarify the taxonomic position of these isolates. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates belonged to the genus . The closest relative was CCM 8763, exhibiting 98.3 and 98.9% 16S rRNA pairwise similarity with the reference isolates P5342 and P5252, respectively. Average nucleotide identity, digital DNA–DNA hybridization and core gene distances calculated from the whole-genome sequencing data confirmed that P5252 and P5342 represent two distinct species. The menaquinone systems of both strains contained MK-7 as the major respiratory quinone. The predominant polar lipids for both strains were phosphatidylethanolamine and one unidentified glycolipid. The major components in the cellular fatty acid composition were summed feature 3 (C 7/Cω6), Cω5, summed feature 4 (anteiso-C B/iso-C I), anteiso-C and iso-C for all isolates. Based on the obtained results, two novel species are proposed, for which the names sp. nov. (type strain P5252=CCM 8765=LMG 31495) and sp. nov. (type strain P5342=CCM 8764=LMG 30613) are suggested.

Funding
This study was supported by the:
  • Ministerstvo Školství, Mládeže a Tělovýchovy (Award CZ.02.1.01/0.0/0.0/16_013/0001761)
    • Principle Award Recipient: Lenka Micenková
  • Ministerstvo Školství, Mládeže a Tělovýchovy (Award LM2015051)
    • Principle Award Recipient: Petra Vídeňská
  • Ministerstvo Školství, Mládeže a Tělovýchovy (Award LM2018127)
    • Principle Award Recipient: Ondrej Šedo
  • Masarykova Univerzita (Award MUNI/A/0824/2019)
    • Principle Award Recipient: Roman Pantůček
  • Ministerstvo Školství, Mládeže a Tělovýchovy (Award LM2018121)
    • Principle Award Recipient: Ivo Sedláček
  • Ministerstvo Školství, Mládeže a Tělovýchovy (Award LM2015078)
    • Principle Award Recipient: Ivo Sedláček
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004540
2020-11-06
2021-08-02
Loading full text...

Full text loading...

References

  1. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 1998; 21:374–383 [View Article][PubMed]
    [Google Scholar]
  2. Peeters K, Ertz D, Willems A. Culturable bacterial diversity at the Princess Elisabeth station (Utsteinen, Sør Rondane mountains, East Antarctica) harbours many new taxa. Syst Appl Microbiol 2011; 34:360–367 [View Article][PubMed]
    [Google Scholar]
  3. Chang X, Zheng J, Jiang F, Liu P, Kan W et al. Hymenobacter arcticus sp. nov., isolated from glacial till. Int J Syst Evol Microbiol 2014; 64:2113–2118 [View Article][PubMed]
    [Google Scholar]
  4. Gu Z, Liu Y, Xu B, Wang N, Jiao N et al. Hymenobacter frigidus sp. nov., isolated from a glacier ice core. Int J Syst Evol Microbiol 2017; 67:4121–4125 [View Article][PubMed]
    [Google Scholar]
  5. Liu K, Liu Y, Wang N, Gu Z, Shen L et al. Hymenobacter glacieicola sp. nov., isolated from glacier ice. Int J Syst Evol Microbiol 2016; 66:3793–3798 [View Article][PubMed]
    [Google Scholar]
  6. Liu L, Zhou EM, Jiao JY, Manikprabhu D, Ming H et al. Hymenobacter mucosus sp. nov., isolated from a karst cave soil sample. Int J Syst Evol Microbiol 2015; 65:4121–4127 [View Article][PubMed]
    [Google Scholar]
  7. Zhu HZ, Yang L, Muhadesi JB, Wang BJ, Liu S. Hymenobacter cavernae sp. nov., isolated from a karst cave. Int J Syst Evol Microbiol 2017; 67:4825–4829 [View Article][PubMed]
    [Google Scholar]
  8. Zhang G, Niu F, Busse H-J, Ma X, Liu W et al. Hymenobacter psychrotolerans sp. nov., isolated from the Qinghai-Tibet Plateau permafrost region. Int J Syst Evol Microbiol 2008; 58:1215–1220 [View Article][PubMed]
    [Google Scholar]
  9. Han L, Wu S-J, Qin C-Y, Zhu YH, Lu Z-Q et al. Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian mountains, China and emended description of the genus Hymenobacter . Antonie van Leeuwenhoek 2014; 105:971–978 [View Article][PubMed]
    [Google Scholar]
  10. Kim MC, Kim CM, Kang OC, Zhang Y, Liu Z et al. Hymenobacter rutilus sp. nov., isolated from marine sediment in the Arctic. Int J Syst Evol Microbiol 2017; 67:856–861 [View Article][PubMed]
    [Google Scholar]
  11. Sun J, Xing M, Wang W, Dai F, Liu J et al. Hymenobacter profundi sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 2018; 68:947–950 [View Article][PubMed]
    [Google Scholar]
  12. Kojima H, Watanabe M, Tokizawa R, Shinohara A, Fukui M. Hymenobacter nivis sp. nov., isolated from red snow in Antarctica. Int J Syst Evol Microbiol 2016; 66:4821–4825 [View Article][PubMed]
    [Google Scholar]
  13. Sedláček I, Králová S, Kýrová K, Mašlaňová I, Busse H-J et al. Red-pink pigmented Hymenobacter coccineus sp. nov., Hymenobacter lapidarius sp. nov. and Hymenobacter glacialis sp. nov., isolated from rocks in Antarctica. Int J Syst Evol Microbiol 2017; 67:1975–1983 [View Article][PubMed]
    [Google Scholar]
  14. Jiang F, Danzeng W, Zhang Y, Zhang Y, Jiang L et al. Hymenobacter rubripertinctus sp. nov., isolated from Antarctic tundra soil. Int J Syst Evol Microbiol 2018; 68:663–668 [View Article][PubMed]
    [Google Scholar]
  15. Sedláček I, Pantůček R, Králová S, Mašlaňová I, Holochová P et al. Hymenobacter amundsenii sp. nov. resistant to ultraviolet radiation, isolated from regoliths in Antarctica. Syst Appl Microbiol 2019; 42:284–290 [View Article][PubMed]
    [Google Scholar]
  16. Sedláček I, Pantůček R, Holochová P, Králová S, Staňková E et al. Hymenobacter humicola sp. nov., isolated from soils in Antarctica. Int J Syst Evol Microbiol 2019; 69:2755–2761 [View Article][PubMed]
    [Google Scholar]
  17. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  18. Buczolits S, Busse H-J. Hymenobacter . In Whitman WB. editor Bergey’s Manual of Systematics of Archaea and Bacteria 2015 Indianapolis, IN: John Wiley & Sons; 2015 pp 1–11
    [Google Scholar]
  19. Klassen JL, Foght JM. Characterization of Hymenobacter isolates from Victoria upper glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles 2011; 15:45–57 [View Article][PubMed]
    [Google Scholar]
  20. Britton G. Structure and properties of carotenoids in relation to function. Faseb J 1995; 9:1551–1558 [View Article][PubMed]
    [Google Scholar]
  21. Mumtaz R, Bashir S, Numan M, Shinwari ZK, Ali M. Pigments from soil bacteria and their therapeutic properties: a mini review. Curr Microbiol 2019; 76:783–790 [View Article][PubMed]
    [Google Scholar]
  22. Kýrová K, Sedláček I, Pantůček R, Králová S, Holochová P et al. Rufibacter ruber sp. nov., isolated from fragmentary rock. Int J Syst Evol Microbiol 2016; 66:4401–4405 [View Article][PubMed]
    [Google Scholar]
  23. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989; 17:7843–7853 [View Article][PubMed]
    [Google Scholar]
  24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  25. Nováková D, Švec P, Zeman M, Busse H-J, Mašlaňová I et al. Pseudomonas leptonychotis sp. nov., isolated from Weddell seals in Antarctica. Int J Syst Evol Microbiol 2020; 70:302–308 [View Article][PubMed]
    [Google Scholar]
  26. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  27. Na SI, Kim YO, Yoon S-H, Ha SM, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  28. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  29. Buczolits S, Denner EB, Vybiral D, Wieser M, Kämpfer P et al. Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int J Syst Evol Microbiol 2002; 52:445–456 [View Article][PubMed]
    [Google Scholar]
  30. Zhang DC, Busse H-J, Liu HC, Zhou YG, Schinner F et al. Hymenobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 2011; 61:859–863 [View Article][PubMed]
    [Google Scholar]
  31. Collins MD, Hutson RA, Grant IR, Patterson MF. Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. Int J Syst Evol Microbiol 2000; 50:731–734 [View Article][PubMed]
    [Google Scholar]
  32. Freiwald A, Sauer S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc 2009; 4:732–742 [View Article][PubMed]
    [Google Scholar]
  33. Maier T, Klepel S, Renner U, Kostrzewa M. Fast and reliable MALDI-TOF MS–based microorganism identification. Nature Methods 2006; 25:68–71
    [Google Scholar]
  34. Sedláček I, Kwon SW, Švec P, Mašlaňová I, Kýrová K et al. Aquitalea pelogenes sp. nov., isolated from mineral peloid. Int J Syst Evol Microbiol 2016; 66:962–967 [View Article][PubMed]
    [Google Scholar]
  35. Švec P, Králová S, Busse H-J, Kleinhagauer T, Kýrová K et al. Pedobacter psychrophilus sp. nov., isolated from fragmentary rock. Int J Syst Evol Microbiol 2017; 67:2538–2543 [View Article][PubMed]
    [Google Scholar]
  36. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986; 123:31–36 [View Article][PubMed]
    [Google Scholar]
  37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  38. Carlone GM, Valadez MJ, Pickett MJ. Methods for distinguishing Gram-positive from Gram-negative bacteria. J Clin Microbiol 1982; 16:1157–1159 [View Article][PubMed]
    [Google Scholar]
  39. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  40. Da X, Jiang F, Chang X, Ren L, Qiu X et al. Pedobacter ardleyensis sp. nov., isolated from soil in Antarctica. Int J Syst Evol Microbiol 2015; 65:3841–3846 [View Article][PubMed]
    [Google Scholar]
  41. Margesin R, Gander S, Zacke G, Gounot AM, Schinner F. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 2003; 7:451–458 [View Article][PubMed]
    [Google Scholar]
  42. CLSI Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement (M100-S25) 35 Wayne, PA: No. 3, Clinical and Laboratory Standards Institute; 2015
    [Google Scholar]
  43. EUCAST Breakpoint tables for interpretation of MICs and zone diameters, version 7.1, the European Committee on antimicrobial susceptibility testing. www.eucast.org ; 2017
  44. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  45. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  46. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  47. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004; 101:11030–11035 [View Article][PubMed]
    [Google Scholar]
  48. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004540
Loading
/content/journal/ijsem/10.1099/ijsem.0.004540
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error