1887

Abstract

A Gram-staining-negative, aerobic, cream-coloured, marine bacterium, with rod-shaped cells, designated strain YJ-S3-2, was isolated from salt flat sediment of Yongyu-do, Republic of Korea. YJ-S3-2 grew at pH 5.0–9.0 (optimum pH 7.0), 4–45 °C (optimum 30 °C) and with 1–18 % (w/v) NaCl (optimum 6 %). The results of 16S rRNA gene sequence analysis indicated that YJ-S3-2 was closely related to SS011B1-4 (97.0 %) followed by, '' D15-8W (96.7 %), 50-11 (96.7 %), DSMZ 179240 (96.5 %) and T17 (96.5 %). The average nucleotide identity (ANI) and the genome to genome distance calculator (GGDC) estimate values between YJ-S3-2 and related type strains were 73.7–79.8 and 19.9–22.5 %, and also 73.5 and 20.7 % with . YJ-S3-2 was characterized as having Q-9 as the predominant respiratory quinone and the principal fatty acids (>10 %) were C (22.3 %), summed feature 9 (Ciso ω9/C 10-methyl, 13.8 %) and 3 (Cω7C1ω6 11.9 %). The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids and two unidentified phospholipids. The DNA G+C content of YJ-S3-2 is 60.9 mol%. On the basis of the polyphasic taxonomic evidence presented in this study, YJ-S3-2 should be classified as representing a novel species within the genus , for which name sp. nov. is proposed, with the type strain YJ-S3-2 (=KACC 19883=KCTC 62937=JCM 33109).

Funding
This study was supported by the:
  • Ministry of Oceans and Fisheries (Award 20170318 and 20170325)
    • Principle Award Recipient: Yeonjae Yoo
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004530
2020-10-20
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/12/6294.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004530&mimeType=html&fmt=ahah

References

  1. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M et al. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 1992; 42:568–576 [View Article][PubMed]
    [Google Scholar]
  2. Bowman JP, McMeekin TA. Marinobacter. Bergey’s Manual of Systematics of Archaea and Bacteria 2015 pp 1–6
    [Google Scholar]
  3. Shivaji S, Gupta P, Chaturvedi P, Suresh K, Delille D. Marinobacter maritimus sp. nov., a psychrotolerant strain isolated from sea water off the subantarctic Kerguelen islands. Int J Syst Evol Microbiol 2005; 55:1453–1456 [View Article][PubMed]
    [Google Scholar]
  4. Rani S, Koh HW, Kim H, Rhee SK, Park SJ. Marinobacter salinus sp. nov., a moderately halophilic bacterium isolated from a tidal flat environment. Int J Syst Evol Microbiol 2017; 67:205–211 [View Article][PubMed]
    [Google Scholar]
  5. Zhuang DC, Chen YG, Zhang YQ, Tang SK, Wu XL et al. Marinobacter zhanjiangensis sp. nov., a marine bacterium isolated from sea water of a tidal flat of the South China Sea. Antonie van Leeuwenhoek 2009; 96:295–301 [View Article][PubMed]
    [Google Scholar]
  6. Cui Z, Gao W, Xu G, Luan X, Li Q et al. Marinobacter aromaticivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from sea sediment. Int J Syst Evol Microbiol 2016; 66:353–359 [View Article][PubMed]
    [Google Scholar]
  7. Xu S, Wang D, Wei Y, Cui Q, Li W. Marinobacter bohaiensis sp. nov., a moderate halophile isolated from benthic sediment of the Bohai sea. Int J Syst Evol Microbiol 2018; 68:3534–3539 [View Article][PubMed]
    [Google Scholar]
  8. Kim J-O, Lee H-J, Han S-I, Whang K-S. Marinobacter halotolerans sp. nov., a halophilic bacterium isolated from a saltern crystallizing pond. Int J Syst Evol Microbiol 2017; 67:460–465 [View Article][PubMed]
    [Google Scholar]
  9. León MJ, Sánchez-Porro C, Ventosa A. Marinobacter aquaticus sp. nov., a moderately halophilic bacterium from a solar saltern. Int J Syst Evol Microbiol 2017; 67:2622–2627 [View Article][PubMed]
    [Google Scholar]
  10. Yoon JH, Lee MH, Kang SJ, Oh TK. Marinobacter salicampi sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 2007; 57:2102–2105 [View Article][PubMed]
    [Google Scholar]
  11. Zhong ZP, Liu Y, Liu HC, Wang F, Zhou YG et al. Marinobacter halophilus sp. nov., a halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2015; 65:2838–2845 [View Article][PubMed]
    [Google Scholar]
  12. Takizawa M, Colwell RR, Hill RT. Isolation and diversity of actinomycetes in the Chesapeake Bay. Appl Environ Microbiol 1993; 59:997–1002 [View Article][PubMed]
    [Google Scholar]
  13. Yoo Y, Lee DW, Lee H, Kwon BO, Khim JS et al. Gemmobacter lutimaris sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2019; 69:1676–1681 [View Article][PubMed]
    [Google Scholar]
  14. Lane D. 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics 1991115–175
    [Google Scholar]
  15. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  16. Phylip FJ. Phylogeny inference package). version 3.5 c: Joseph Felsenstein 1993
    [Google Scholar]
  17. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  24. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:1–10 [View Article]
    [Google Scholar]
  28. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  29. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  30. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article][PubMed]
    [Google Scholar]
  31. Cowan ST, Steel KJ. Manual for the identification of medical bacteria. Manual for the Identification of Medical Bacteria 1965
    [Google Scholar]
  32. Collins M. Analysis of isoprenoid quinones. Methods Microbiol 1985; 18:329–366
    [Google Scholar]
  33. Kroppenstedt R. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic press; 1985 pp 173–199
    [Google Scholar]
  34. Minnikin DE, Alshamaony L, Goodfellow M. Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 1975; 88:200–204 [View Article][PubMed]
    [Google Scholar]
  35. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  36. Guo B, Gu J, Ye Y-G, Tang Y-Q, Kida K et al. Marinobacter segnicrescens sp. nov., a moderate halophile isolated from benthic sediment of the South China Sea. Int J Syst Evol Microbiol 2007; 57:1970–1974 [View Article][PubMed]
    [Google Scholar]
  37. Romanenko LA, Schumann P, Rohde M, Zhukova NV, Mikhailov VV et al. Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 2005; 55:143–148 [View Article][PubMed]
    [Google Scholar]
  38. Kim B-Y, Weon H-Y, Yoo S-H, Kim J-S, Kwon S-W et al. Marinobacter koreensis sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 2006; 56:2653–2656 [View Article][PubMed]
    [Google Scholar]
  39. Gao W, Cui Z, Li Q, Xu G, Jia X et al. Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from the sediment of the South China Sea. Antonie van Leeuwenhoek 2013; 103:485–491 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004530
Loading
/content/journal/ijsem/10.1099/ijsem.0.004530
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error