1887

Abstract

The genus has three validated species, , and , all of which were isolated from Vulcano island, Italy. They are obligately chemolithotrophic, aerobic, acidophilic and halophilic in nature and use either ferrous iron or reduced sulphur as electron donors. Recently, a novel strain was isolated from an acidic, saline drain in the Yilgarn region of Western Australia. Strain F5 has an absolute requirement for sodium chloride (>5 mM) and is osmophilic, growing in elevated concentrations (>1 M) of magnesium sulphate. A defining feature of its physiology is its ability to catalyse the oxidative dissolution of the most abundant copper mineral, chalcopyrite, suggesting a potential role in biomining. Originally categorized as a strain of , 16S rRNA gene phylogeny and multiprotein phylogenies derived from clusters of orthologous proteins (COGS) of ribosomal protein families and universal protein families unambiguously demonstrate that strain F5 forms a well-supported separate branch as a sister clade to and is clearly distinguishable from DSM 14175 and DSM14174. Results of comparisons between strain F5 and the other species, using genome-based average nucleotide identity, average amino acid identity, correlation indices of tetra-nucleotide signatures (Tetra) and genome-to-genome distance (digital DNA–DNA hybridization), support the contention that strain F5 represents a novel species of the genus . It is proposed that strain F5 should be formally reclassified as F5 (=DSM 105917=JCM 32255).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004519
2020-10-28
2021-02-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/12/6226.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004519&mimeType=html&fmt=ahah

References

  1. Rohwerder T, Gehrke T, Kinzler K, Sand W. Bioleaching review Part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 2003; 63:239–248 [CrossRef][PubMed]
    [Google Scholar]
  2. Watling H. Microbiological advances in Biohydrometallurgy. Minerals 2016; 6:49 [CrossRef]
    [Google Scholar]
  3. Shiers DW, Blight KR, Ralph DE. Sodium sulphate and sodium chloride effects on batch culture of iron oxidising bacteria. Hydrometallurgy 2005; 80:75–82 [CrossRef]
    [Google Scholar]
  4. Zammit CM, Mangold S, Jonna V, Mutch LA, Watling HR et al. Bioleaching in brackish waters--effect of chloride ions on the acidophile population and proteomes of model species. Appl Microbiol Biotechnol 2012; 93:319–329 [CrossRef][PubMed]
    [Google Scholar]
  5. Zammit CM, Mutch LA, Watling HR, Watkin ELJ. The characterization of salt tolerance in biomining microorganisms and the search for novel salt tolerant strains. Adv Mat Res 2009; 71-73:283–286 [CrossRef]
    [Google Scholar]
  6. Kaksonen AH, Boxall NJ, Gumulya Y, Khaleque HN, Morris C et al. Recent progress in biohydrometallurgy and microbial characterisation. Hydrometallurgy 2018; 180:7–25 [CrossRef]
    [Google Scholar]
  7. Khaleque HN, Kaksonen AH, Boxall NJ, Watkin ELJ. Chloride ion tolerance and pyrite bioleaching capabilities of pure and mixed halotolerant, acidophilic iron- and sulfur-oxidizing cultures. Miner Eng 2018; 120:87–93 [CrossRef]
    [Google Scholar]
  8. Khaleque HN, Corbett MK, Ramsay JP, Kaksonen AH, Boxall NJ et al. Complete genome sequence of Acidihalobacter prosperus strain F5, an extremely acidophilic, iron- and sulfur-oxidizing halophile with potential industrial applicability in saline water bioleaching of chalcopyrite. J Biotechnol 2017; 262:56–59 [CrossRef][PubMed]
    [Google Scholar]
  9. Huber H, Stetter KO. Thiobacillus prosperus sp. nov., represents a new group of halotolerant metal-mobilizing bacteria isolated from a marine geothermal field. Arch Microbiol 1989; 151:479–485 [CrossRef]
    [Google Scholar]
  10. Simmons S, Norris R. Acidophiles of saline water at thermal vents of Vulcano, Italy. Extremophiles 2002; 6:201–207 [CrossRef][PubMed]
    [Google Scholar]
  11. Ossandon FJ, Cárdenas JP, Corbett M, Quatrini R, Holmes DS et al. Draft genome sequence of the iron-oxidizing, acidophilic, and halotolerant "Thiobacillus prosperus" type strain DSM 5130. Genom Announc 2014; 2:e01042–01014 [CrossRef]
    [Google Scholar]
  12. Khaleque HN, Ramsay JP, Murphy RJT, Kaksonen AH, Boxall NJ et al. Draft Genome Sequence of the Acidophilic, Halotolerant, and Iron/Sulfur-Oxidizing Acidihalobacter prosperus DSM 14174 (Strain V6). Genom Announc 2017; 5:e01469–01416 [CrossRef]
    [Google Scholar]
  13. Khaleque HN, Ramsay JP, Murphy RJT, Kaksonen AH, Boxall NJ et al. Draft Genome Sequence of Acidihalobacter ferrooxidans DSM 14175 (Strain V8), a New Iron- and Sulfur-Oxidizing, Halotolerant, Acidophilic Species. Genom Announc 2017; 5:e00413–00417 [CrossRef]
    [Google Scholar]
  14. Khaleque HN, González C, Kaksonen AH, Boxall NJ, Holmes DS et al. Genome-based classification of two halotolerant extreme acidophiles, Acidihalobacter prosperus V6 (= DSM 14174=JCM 32253) and ‘Acidihalobacter ferrooxidans’ V8 (= DSM 14175=JCM 32254) as two new species, Acidihalobacter aeolianus sp. nov. and Acidihalobacter ferrooxydans sp. nov., respectively. Int J Syst Evol Microbiol 2019; 69:1557–1565 [CrossRef][PubMed]
    [Google Scholar]
  15. Pablo Cárdenas J, Ortiz R, Norris PR, Watkin E, Holmes DS. Reclassification of 'Thiobacillus prosperus' Huber and Stetter 1989 as Acidihalobacter prosperus gen. nov., sp. nov., a member of the family Ectothiorhodospiraceae . Int J Syst Evol Microbiol 2015; 65:3641–3644 [CrossRef][PubMed]
    [Google Scholar]
  16. Johnson DB, McGinness S. A highly effecient and universal solid medium for growing mesophilic and moderately thermophilic, iron-oxidizing, acidophilic bacteria. J Microbiol Methods 1991; 13:113–122 [CrossRef]
    [Google Scholar]
  17. Zammit CM, Mutch LA, Watling HR, Watkin EL. The recovery of nucleic acid from biomining and acid mine drainage microorganisms. Hydrometallurgy 2011; 108:87–92 [CrossRef]
    [Google Scholar]
  18. Dopson M, Holmes DS, Lazcano M, McCredden TJ, Bryan CG et al. Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions. Front Microbiol 2016; 7:2132 [CrossRef][PubMed]
    [Google Scholar]
  19. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [CrossRef][PubMed]
    [Google Scholar]
  20. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 2007; 23:673–679 [CrossRef][PubMed]
    [Google Scholar]
  21. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006; 72:5069–5072 [CrossRef][PubMed]
    [Google Scholar]
  22. Cole JR, Wang Q, Cardenas E, Fish J, Chai B et al. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009; 37:D141–D145 [CrossRef][PubMed]
    [Google Scholar]
  23. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007; 35:7188–7196 [CrossRef][PubMed]
    [Google Scholar]
  24. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped blast and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  25. Katoh K, Misawa K, Kuma K-ichi, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [CrossRef][PubMed]
    [Google Scholar]
  26. Katoh K, Standley DM. MAFFT: iterative refinement and additional methods. Methods Mol Biol 2014; 1079:131–146 [CrossRef][PubMed]
    [Google Scholar]
  27. Brown J. Bootstrap hypothesis tests for evolutionary trees and other dendrograms. Proc Natl Acad Sci U S A 1994; 91:12293–12297 [CrossRef][PubMed]
    [Google Scholar]
  28. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [CrossRef][PubMed]
    [Google Scholar]
  29. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [CrossRef][PubMed]
    [Google Scholar]
  30. Yutin N, Puigbò P, Koonin EV, Wolf YI. Phylogenomics of prokaryotic ribosomal proteins. PLoS One 2012; 7:e36972 [CrossRef][PubMed]
    [Google Scholar]
  31. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003; 4:41 [CrossRef][PubMed]
    [Google Scholar]
  32. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [CrossRef][PubMed]
    [Google Scholar]
  33. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [CrossRef][PubMed]
    [Google Scholar]
  34. López-Hermoso C, de la Haba RR, Sánchez-Porro C, Papke RT, Ventosa A. Assessment of multilocus sequence analysis as a valuable tool for the classification of the genus Salinivibrio . Front Microbiol 2017; 8:1107 [CrossRef][PubMed]
    [Google Scholar]
  35. Yonezuka K, Shimodaira J, Tabata M, Ohji S, Hosoyama A et al. Phylogenetic analysis reveals the taxonomically diverse distribution of the Pseudomonas putida group. J Gen Appl Microbiol 2017; 63:1–10 [CrossRef][PubMed]
    [Google Scholar]
  36. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas . Front Microbiol 2015; 6:214 [CrossRef][PubMed]
    [Google Scholar]
  37. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [CrossRef]
    [Google Scholar]
  38. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  40. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:btv681 [CrossRef][PubMed]
    [Google Scholar]
  41. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  43. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [CrossRef][PubMed]
    [Google Scholar]
  44. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012; 28:464–469 [CrossRef][PubMed]
    [Google Scholar]
  45. Davis-Belmar CS, Nicolle JLC, Norris PR. Ferrous iron oxidation and leaching of copper ore with halotolerant bacteria in ore columns. Hydrometallurgy 2008; 94:144–147 [CrossRef]
    [Google Scholar]
  46. Norris PR, Davis-Belmar CS, Nicolle JLC, Calvo-Bado LA, Angelatou V. Pyrite oxidation and copper sulfide ore leaching by halotolerant, thermotolerant bacteria. Hydrometallurgy 2010; 104:432–436 [CrossRef]
    [Google Scholar]
  47. Imhoff JF. Family II. Ectothiorhodospiraceae Imhoff 1984b, 339VP. Bergey’s Manual of Systematic Bacteriology: Volume 2: The Proteobacteria, Part B: The Gammaproteobacteria 2 2007 p 41
    [Google Scholar]
  48. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T et al. Opinion: Re-evaluating prokaryotic species. Nat Rev Microbiol 2005; 3:733–739 [CrossRef][PubMed]
    [Google Scholar]
  49. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York, NY: John Wiley and Sons; 1991 pp 115–175
    [Google Scholar]
  50. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [CrossRef]
    [Google Scholar]
  51. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  52. Rodriguez-R LM, Castro JC, Kyrpides NC, Cole JR, Tiedje JM et al. How much do rRNA gene surveys underestimate extant bacterial diversity?. Appl Environ Microbiol 2018; 84:e00014–00018 [CrossRef][PubMed]
    [Google Scholar]
  53. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  54. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:1–8 [CrossRef]
    [Google Scholar]
  55. Kim M, Oh HS, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  56. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe 2014; 9:111–118 [CrossRef]
    [Google Scholar]
  57. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [CrossRef][PubMed]
    [Google Scholar]
  58. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [CrossRef][PubMed]
    [Google Scholar]
  59. Teeling H, Meyerdierks A, Bauer M, Amann R, Glöckner FO. Application of tetranucleotide frequencies for the assignment of genomic fragments. Environ Microbiol 2004; 6:938–947 [CrossRef][PubMed]
    [Google Scholar]
  60. Simmons S. The microbial ecology of acidic environments. PhD thesis University of Warwick; 2001
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004519
Loading
/content/journal/ijsem/10.1099/ijsem.0.004519
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error