1887

Abstract

A Gram-stain-negative, aerobic, ovoid-rod-shaped bacterium, designated strain SM1903, was isolated from surface seawater of the Mariana Trench. The strain grew at 15–37 °C (optimum, 35 °C) and with 1–15 % (optimum, 4 %) NaCl. It hydrolysed aesculin but did not reduce nitrate to nitrite and hydrolyse Tween 80. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain SM1903 formed a separate lineage within the family , sharing the highest 16S rRNA gene sequence similarity with type strains of (95.7 %) and (95.7 %). In phylogenetic trees based on single-copy OCs and whole proteins sequences, strain SM1903 fell within a sub-cluster encompassed by , and and formed a branch adjacent to . The major cellular fatty acids were summed feature 8 (C 7 and/or C 6), C and 11-methyl-C 7. The polar lipids mainly comprised phosphatidylglycerol, phosphatidylcholine, one unidentified lipid, one unidentified aminolipid, and one unidentified glycolipid. The solo respiratory quinone was ubiquinone-10. The genomic DNA G+C content of strain SM1903 was 66.0 mol%. Based on the results of phenotypic, chemotaxonomic, and phylogenetic characterization for strain SM1903, it is considered to represent a novel species of a novel genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain is SM1903 (=MCCC 1K03608=KCTC 72046).

Funding
This study was supported by the:
  • the Science and Technology Basic Resources Investigation Program of China (Award 2017FY100804)
    • Principle Award Recipient: Xi-Ying Zhang
  • Taishan Scholars Program of Shandong Province (Award tspd20181203)
    • Principle Award Recipient: Yu-Zhong Zhang
  • National Science Foundation of China (Award 31870052)
    • Principle Award Recipient: Xiu-Lan Chen
  • National Science Foundation of China (Award 31670063)
    • Principle Award Recipient: Xi-Ying Zhang
  • AoShan Talents Cultivation Program (Award 2017ASTCP-OS14)
    • Principle Award Recipient: Yu-Zhong Zhang
  • National Key R&D Program of China (Award 2018YFC1406504)
    • Principle Award Recipient: Xiao-Yan Song
  • National Key R&D Program of China (Award 2018YFC0310704)
    • Principle Award Recipient: Xiu-Lan Chen
  • National Key R&D Program of China (Award 2016YFA0601303)
    • Principle Award Recipient: Not Applicable
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004512
2020-10-14
2021-08-02
Loading full text...

Full text loading...

References

  1. Garrity GM, Bell JA, Lilburn T. Rhodobacteraceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer; 2005 p 161
    [Google Scholar]
  2. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2016; 66:2463–2466 [View Article][PubMed]
    [Google Scholar]
  3. Pujalte M, Lucena T, Ruvira M, Arahal D, Macián M et al. The family Rhodobacteraceae . In Rosenberg E, DeLong EF. (editors) The Prokaryotes-Alphaproteobacteria and Betaproteobacteria vol.8, 4th ed. Berlin: Springer; 2014 p 439
    [Google Scholar]
  4. Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J 2017; 11:1483–1499 [View Article][PubMed]
    [Google Scholar]
  5. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  6. Labrenz M, Lawson PA, Tindall BJ, Collins MD, Hirsch P. Roseisalinus antarcticus gen. nov., sp. nov., a novel aerobic bacteriochlorophyll a-producing α-proteobacterium isolated from hypersaline Ekho lake, Antarctica. Int J Syst Evol Microbiol 2005; 55:41–47 [View Article][PubMed]
    [Google Scholar]
  7. Martínez-Checa F, Quesada E, Martínez-Cánovas MJ, Llamas I, Bejar V. Palleronia marisminoris gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium belonging to the 'Alphaproteobacteria', isolated from a saline soil. Int J Syst Evol Microbiol 2005; 55:2525–2530 [View Article][PubMed]
    [Google Scholar]
  8. Gardner JV, Armstrong AA, Calder BR, Beaudoin J. So, How Deep Is the Mariana Trench?. Marine Geodesy 2014; 37:1–13 [View Article]
    [Google Scholar]
  9. Glud RN, Wenzhöfer F, Middelboe M, Oguri K, Turnewitsch R et al. High rates of microbial carbon turnover in sediments in the deepest oceanic Trench on earth. Nat Geosci 2013; 6:284–288 [View Article]
    [Google Scholar]
  10. Zhou S, Ren Q, Li Y, Liu J, Wang X, Zhang XH et al. Abyssibacter profundi gen. nov., sp. nov., a marine bacterium isolated from seawater of the Mariana Trench. Int J Syst Evol Microbiol 2018; 68:3424–3429 [View Article][PubMed]
    [Google Scholar]
  11. Yang S, Li X, Xiao X, Zhuang G, Zhang Y. Sphingomonas profundi sp. nov., isolated from deep-sea sediment of the Mariana Trench. Int J Syst Evol Microbiol 2020; 70:3809–3815 [View Article][PubMed]
    [Google Scholar]
  12. Sun H, Hu Y, Zhou S, Zheng Y, Zhang XH. Glycocaulis profundi sp. nov., a marine bacterium isolated from seawater of the Mariana Trench. Int J Syst Evol Microbiol 2020; 70:814–819 [View Article]
    [Google Scholar]
  13. Wang K, Shen Y, Yang Y, Gan X, Liu G et al. Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation. Nat Ecol Evol 2019; 3:823–833 [View Article][PubMed]
    [Google Scholar]
  14. Liu J, Zheng Y, Lin H, Wang X, Li M et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 2019; 7:47 [View Article][PubMed]
    [Google Scholar]
  15. Eilers H, Pernthaler J, Glöckner FO, Amann R. Culturability and in situ abundance of pelagic bacteria from the North sea. Appl Environ Microbiol 2000; 66:3044–3051 [View Article][PubMed]
    [Google Scholar]
  16. Huo YY, Li ZY, You H, Wang CS, Post AF et al. Oceanicola antarcticus sp. nov. and Oceanicola flagellatus sp. nov., moderately halophilic bacteria isolated from seawater. Int J Syst Evol Microbiol 2014; 64:2975–2979 [View Article][PubMed]
    [Google Scholar]
  17. Cho JC, Giovannoni SJ. Oceanicola granulosus gen. nov., sp. nov. and Oceanicola batsensis sp. nov., poly-β-hydroxybutyrate-producing marine bacteria in the order 'Rhodobacterales'. Int J Syst Evol Microbiol 2004; 54:1129–1136 [View Article][PubMed]
    [Google Scholar]
  18. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  19. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  20. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  24. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. mega X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  27. Nei M, Kumar S. Molecular Evolution and Phylogenetics Oxford University Press; 2000
    [Google Scholar]
  28. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 2017; 27:768–777 [View Article][PubMed]
    [Google Scholar]
  29. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  30. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article][PubMed]
    [Google Scholar]
  31. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 2011; 12:124 [View Article][PubMed]
    [Google Scholar]
  32. Zuo G, Hao B. CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genom Proteom Bioinformatics 2015; 13:321–331 [View Article][PubMed]
    [Google Scholar]
  33. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  36. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article][PubMed]
    [Google Scholar]
  37. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids 101, MIDI Technical Note. Newark, DE: MIDI; 2001
    [Google Scholar]
  38. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial Systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  39. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  40. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 21–41
    [Google Scholar]
  41. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  42. Andrews JM. BSAC Working Party on Susceptibility Testing BSAC standardized disc susceptibility testing method (version 7). J Antimicrob Chemother 2008; 62:256–278 [View Article][PubMed]
    [Google Scholar]
  43. Suyama T, Shigematsu T, Takaichi S, Nodasaka Y, Fujikawa S et al. Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the β-subclass of the Proteobacteria . Int J Syst Evol Microbiol 1999; 49:449–457 [View Article]
    [Google Scholar]
  44. Lin KY, Sheu SY, Chang PS, Cho JC, Chen WM. Oceanicola marinus sp. nov., a marine alphaproteobacterium isolated from seawater collected off Taiwan. Int J Syst Evol Microbiol 2007; 57:1625–1629 [View Article][PubMed]
    [Google Scholar]
  45. Gu J, Guo B, Wang YN, Yu SL, Inamori R et al. Oceanicola nanhaiensis sp. nov., isolated from sediments of the South China Sea. Int J Syst Evol Microbiol 2007; 57:157–160 [View Article][PubMed]
    [Google Scholar]
  46. Zheng Q, Chen C, Wang YN, Jiao N. Oceanicola nitratireducens sp. nov., a marine alphaproteobacterium isolated from the South China Sea. Int J Syst Evol Microbiol 2010; 60:1655–1659 [View Article][PubMed]
    [Google Scholar]
  47. Lai Q, Li G, Liu X, Du Y, Sun F et al. Pseudooceanicola atlanticus gen. nov. sp. nov., isolated from surface seawater of the Atlantic ocean and reclassification of Oceanicola batsensis, Oceanicola marinus, Oceanicola nitratireducens, Oceanicola nanhaiensis, Oceanicola antarcticus and Oceanicola flagellatus, as Pseudooceanicola batsensis comb. nov., Pseudooceanicola marinus comb. nov., Pseudooceanicola nitratireducens comb. nov., Pseudooceanicola nanhaiensis comb. nov., Pseudooceanicola antarcticus comb. nov., and Pseudooceanicola flagellatus comb. nov. Antonie van Leeuwenhoek 2015; 107:1065–1074 [View Article][PubMed]
    [Google Scholar]
  48. Huang MM, Guo LL, Wu YH, Lai QL, Shao ZZ et al. Pseudooceanicola lipolyticus sp. nov., a marine alphaproteobacterium, reclassification of Oceanicola flagellatus as Pseudooceanicola flagellatus comb. nov. and emended description of the genus Pseudooceanicola . Int J Syst Evol Microbiol 2018; 68:409–415 [View Article][PubMed]
    [Google Scholar]
  49. Yu XY, Zhai JY, Fu GY, Shen X, Zhao Z et al. Aestuarium zhoushanense gen. nov., sp. nov., isolated from the tidal flat. Curr Microbiol 2017; 74:1469–1476 [View Article][PubMed]
    [Google Scholar]
  50. Park S, Lee M, Yoon J. Oceanicola litoreus sp. nov., an alphaproteobacterium isolated from the seashore sediment. Antonie van Leeuwenhoek 2013; 103:859–866 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004512
Loading
/content/journal/ijsem/10.1099/ijsem.0.004512
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error