1887

Abstract

Two morphologically similar halophilic strains, named USBA 874 and USBA 960, were isolated from water and sediment samples collected from the Zipaquirá salt mine in the Colombian Andes. Both isolates had non-spore-forming, Gram-stain-negative and motile cells that grew aerobically. The strains grew optimally at 30 °C, pH 7.0 and with 25 % NaCl (w/v). The isolates showed almost identical 16S rRNA gene sequences (99.0 % similarity). The predominant quinones of USBA-960 were Q-8, Q-7 and Q-9. The major cellular fatty acids were C cyclo 8, C and C. According to 16S rRNA gene sequencing, the closest phylogenetic relatives are species (similarity between 93.6 and 92.3 %), OUC007 (88.6 %) and 22II-S10r2 (88.7 %). In addition, the result of genome distance phylogeny analysis between strains USBA 874 and USBA 960, (YIM 95161), (E1L3A), (MK-B5) and (YTM-1) was 18.5 %. Other species delineation analyses also showed low identity such as ANIb and ANIm values (<69.0 and <84.0 % respectively), TETRA (<0.81) and AAI values (<0.67). Genome sequencing of USBA 960 revealed a genome size of 2.47 Mbp and a G+C content of 59.71 mol%. Phylogenetic analysis of strains USBA 874 and USBA 960 indicated that they formed a different lineage within the family . Based on phenotypic and chemotaxonomic characteristics, phylogenetic analysis and DNA–DNA relatedness values, along with identity at whole genome level, it can be concluded that strains USBA 960 and USBA 874 represent a novel genus of the family and the name gen. nov., sp. nov. is proposed. The type strain is USBA 960 (CMPUJ U095=CECT 30006).

Funding
This study was supported by the:
  • Not Applicable , Colciencias , (Award 030-2017)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004490
2020-10-09
2020-10-20
Loading full text...

Full text loading...

References

  1. Dupont CL, Larsson J, Yooseph S, Ininbergs K, Goll J et al. Functional tradeoffs underpin salinity-driven divergence in microbial community composition. PLoS One 2014; 9:e89549 [CrossRef]
    [Google Scholar]
  2. Morrissey EM, Franklin RB. Evolutionary history influences the salinity preference of bacterial taxa in wetland soils. Front Microbiol 2015; 6:1–12 [CrossRef]
    [Google Scholar]
  3. Kunte H, Lentzen G, Galinski E. Industrial production of the cell protectant ectoine: protection mechanisms, processes, and products. Curr Biotechnol 2014; 3:10–25 [CrossRef]
    [Google Scholar]
  4. Díaz-Cárdenas C, Cantillo A, Rojas LY, Sandoval T, Fiorentino S et al. Microbial Diversity of Saline Environments: Searching for Cytotoxic Activities AMB Express.; 2017
    [Google Scholar]
  5. Corinaldesi C, Barone G, Marcellini F, Dell’Anno A, Danovaro R. Marine Microbial-Derived molecules and their potential use in Cosmeceutical and cosmetic products. Mar Drugs 2017; 15:118–121 [CrossRef]
    [Google Scholar]
  6. Chen L, Wang G, Bu T, Zhang Y, Wang Y et al. Phylogenetic analysis and screening of antimicrobial and cytotoxic activities of moderately halophilic bacteria isolated from the Weihai solar saltern (China). World J Microbiol Biotechnol 2010; 26:879–888 [CrossRef]
    [Google Scholar]
  7. Fortunato CS, Crump BC. Microbial gene abundance and expression patterns across a river to Ocean salinity gradient. PLoS One 2015; 10:e0140578–22 [CrossRef][PubMed]
    [Google Scholar]
  8. Antunes A, Eder W, Fareleira P, Santos H, Huber R. Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately halophilic bacterium from the brine-seawater interface of the Shaban deep, red sea. Extremophiles 2003; 7:29–34 [CrossRef][PubMed]
    [Google Scholar]
  9. Crespo-Medina M, Chatziefthimiou A, Cruz-Matos R, Pérez-Rodríguez I, Barkay T et al. Salinisphaera hydrothermalis sp. nov., a mesophilic, halotolerant, facultatively autotrophic, thiosulfate-oxidizing gammaproteobacterium from deep-sea hydrothermal vents, and emended description of the genus Salinisphaera. Int J Syst Evol Microbiol 2009; 59:1497–1503 [CrossRef][PubMed]
    [Google Scholar]
  10. Bae GD, Hwang CY, Kim HM, Cho BC, Chung YH. Salinisphaera dokdonensis sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2010; 60:680–685 [CrossRef][PubMed]
    [Google Scholar]
  11. Zhang YJ, Tang SK, Shi R, Klenk HP, Chen C et al. Salinisphaera halophila sp. nov., a moderately halophilic bacterium isolated from brine of a salt well. Int J Syst Evol Microbiol 2012; 62:2174–2179 [CrossRef][PubMed]
    [Google Scholar]
  12. Park SJ, Cha IT, Kim SJ, Shin KS, Hong YS et al. Salinisphaera orenii sp. nov., isolated from a solar saltern. Int J Syst Evol Microbiol 2012; 62:1877–1883 [CrossRef][PubMed]
    [Google Scholar]
  13. Shimane Y, Tsuruwaka Y, Miyazaki M, Mori K, Minegishi H et al. Salinisphaera japonica sp. nov., a moderately halophilic bacterium isolated from the surface of a deep-sea fish, malacocottus gibber, and emended description of the genus Salinisphaera. Int J Syst Evol Microbiol 2013; 63:2180–2185 [CrossRef][PubMed]
    [Google Scholar]
  14. Tang L, Zhang Z, Xie R, Jiao N, Zhang Y. Salinisphaera aquimarina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2018; 68:1130–1134 [CrossRef][PubMed]
    [Google Scholar]
  15. Zhou S, Ren Q, Li Y, Liu J, Wang X et al. Abyssibacter profundi gen. nov., sp. nov., a marine bacterium isolated from seawater of the Mariana Trench. Int J Syst Evol Microbiol 2018; 68:3424–3429 [CrossRef][PubMed]
    [Google Scholar]
  16. Kelly SA, Megaw J, Gilmore BF. Draft genome sequence of Salinisphaera sp. strain KSM-18, an obligately halophilic bacterium isolated from a Triassic salt mine. Cameron Thrash J, editor. Microbiol Resour Announc 2018; 7:1–2
    [Google Scholar]
  17. Li G, Lai Q, Liu X, Sun F, Du Y et al. Maricoccus atlantica gen. nov. sp. nov., isolated from deep sea sediment of the Atlantic Ocean. Antonie van Leeuwenhoek 2013; 104:1073–1081 [CrossRef][PubMed]
    [Google Scholar]
  18. Widdel F, Pfennig N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 1981; 129:395–400 [CrossRef][PubMed]
    [Google Scholar]
  19. López G, Díaz-Cárdenas C, David Alzate J, Gonzalez LN, Shapiro N et al. Description of Alicyclobacillus montanus sp. nov., a mixotrophic bacterium isolated from acidic hot springs. Int J Syst Evol Microbiol 2018; 68:1608–1615 [CrossRef][PubMed]
    [Google Scholar]
  20. Díaz-Cárdenas C, Bernal LF, Caro-Quintero A, López G, David Alzate J, Alzate JD et al. Draft genome and description of Consotaella salsifontis gen. nov. sp. nov., a halophilic, free-living, nitrogen-fixing alphaproteobacterium isolated from an ancient terrestrial saline spring. Int J Syst Evol Microbiol 2017; 67:3744–3751 [CrossRef][PubMed]
    [Google Scholar]
  21. López G, Cañas-Duarte SJ, Pinzón-Velasco AM, Vega-Vela NE, Rodríguez M et al. Description of a new anaerobic thermophilic bacterium, Thermoanaerobacterium butyriciformans sp. nov. Syst Appl Microbiol 2017; 40:86–91 [CrossRef][PubMed]
    [Google Scholar]
  22. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [CrossRef]
    [Google Scholar]
  23. Storey KB, Miller DC, Plaxton WC, Storey JM. Gas-liquid chromatography and enzymatic determination of alanopine and strombine in tissues of marine invertebrates. Anal Biochem 1982; 125:50–58 [CrossRef][PubMed]
    [Google Scholar]
  24. Asker D, Awad TS, Beppu T, Ueda K. Rapid and selective screening method for isolation and identification of carotenoid-producing bacteria. In Barreiro C, Barredo J-L. (editors) Microbial Carotenoids: Methods and Protocols, Methods in Molecular Biology [Internet] Springer Nature; 2018 pp 143–170
    [Google Scholar]
  25. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  26. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 2004; 101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
  30. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  32. Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D et al. The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v.4). Stand Genomic Sci 2015; 10:1–6 [CrossRef]
    [Google Scholar]
  33. Chen I-MA, Markowitz VM, Palaniappan K, Szeto E, Chu K et al. Supporting community annotation and user collaboration in the integrated microbial genomes (IMG) system. BMC Genomics 2016; 17:1–16 [CrossRef][PubMed]
    [Google Scholar]
  34. Vetriani C, Voordeckers JW, Crespo-Medina M, O'Brien CE, Giovannelli D et al. Deep-Sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap). ISME J 2014; 8:1510–1521 [CrossRef][PubMed]
    [Google Scholar]
  35. Seip B, Galinski EA, Kurz M. Natural and engineered hydroxyectoine production based on the Pseudomonas stutzeri ectABCD-ask gene cluster. Appl Environ Microbiol 2011; 77:1368–1374 [CrossRef][PubMed]
    [Google Scholar]
  36. Antunes A, Alam I, Bajic VB, Stingl U. Genome sequence of Salinisphaera shabanensis, a gammaproteobacterium from the harsh, variable environment of the brine-seawater interface of the Shaban deep in the red sea. J Bacteriol 2011; 193:4555–4556 [CrossRef][PubMed]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  38. Medlar AJ, Törönen P, Holm L. AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 2018; 46:W479–W485 [CrossRef][PubMed]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  41. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [CrossRef][PubMed]
    [Google Scholar]
  42. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004490
Loading
/content/journal/ijsem/10.1099/ijsem.0.004490
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error