1887

Abstract

To clarify the evolutionary relationships and classification of species, comprehensive phylogenomic and comparative analyses were performed on >300 genomes. Multiple genomic-scale phylogenetic trees were initially reconstructed to identify different monophyletic clades of species. In parallel, detailed analyses were performed on protein sequences of genomes to identify conserved signature indels (CSIs) that are specific for each of the identified clades. We show that in different reconstructed trees, most of the species, in addition to the Subtilis and Cereus clades, consistently formed 17 novel distinct clades. Additionally, some species reliably grouped with the genera and . The distinctness of identified species clades is independently strongly supported by 128 identified CSIs which are unique characteristics of these clades, providing reliable means for their demarcation. Based on the strong phylogenetic and molecular evidence, we are proposing that these 17 species clades should be recognized as novel genera, with the names gen. nov. gen. nov., gen. nov. gen. nov. gen. nov. gen. nov. gen. nov. gen. nov. gen. nov. gen. nov. gen. nov. gen. nov. gen. nov. gen. nov. gen. nov., gen. nov. and gen. nov. We also propose to transfer ‘s’ to sp. nov. (type strain: NB22=JCM 17569=DSM 26768). Additionally, we report 31 CSIs that are unique characteristics of either the members of the Subtilis clade (containing the type species ) or the Cereus clade (containing and ). As most species which are not part of these two clades can now be assigned to other genera, we are proposing an emended description of the genus to restrict it to only the members of the Subtilis and Cereus clades.

Funding
This study was supported by the:
  • Natural Science and Engieering Research Council of Canada (Award 20011106)
    • Principle Award Recipient: Radhey S. Gupta
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004475
2020-10-28
2021-07-26
Loading full text...

Full text loading...

References

  1. Parte AC. LPSN – list of prokaryotic names with standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article]
    [Google Scholar]
  2. Logan NA, De Vos P et al. Genus Bacillus Cohn 1872. In De Vos P, Garrity M, Jones D, Krieg R, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2009 pp 21–128
    [Google Scholar]
  3. Dunlap CA. Taxonomy of registered Bacillus spp. strains used as plant pathogen antagonists. Biological Control 2019; 134:82–86 [View Article]
    [Google Scholar]
  4. Zeigler DR. The genome sequence of Bacillus subtilis subsp. spizizenii W23: insights into speciation within the B. subtilis complex and into the history of B. subtilis genetics. Microbiology 2011; 157:2033–2041 [View Article]
    [Google Scholar]
  5. Fritze D. Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria. Phytopathology 2004; 94:1245–1248 [View Article]
    [Google Scholar]
  6. Ash C, Farrow JAE, Wallbanks S, Collins MD. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 1991; 13:202–206 [View Article]
    [Google Scholar]
  7. Bhandari V, Ahmod NZ, Shah HN, Gupta RS. Molecular signatures for Bacillus species: demarcation of the Bacillus subtilis and Bacillus cereus clades in molecular terms and proposal to limit the placement of new species into the genus Bacillus. Int J Syst Evol Microbiol 2013; 63:2712–2726 [View Article]
    [Google Scholar]
  8. Logan NA. Bacillus and relatives in foodborne illness. J Appl Microbiol 2012; 112:417–429 [View Article][PubMed]
    [Google Scholar]
  9. Koehler TM. Bacillus anthracis physiology and genetics. Mol Aspects Med 2009; 30:386–396 [View Article]
    [Google Scholar]
  10. Pignatelli M, Moya A, Tamames J, EnvDB TJ. EnvDB, a database for describing the environmental distribution of prokaryotic taxa. Environ Microbiol Rep 2009; 1:191–197 [View Article][PubMed]
    [Google Scholar]
  11. Bottone EJ. Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 2010; 23:382–398 [View Article]
    [Google Scholar]
  12. Sanchis V, Bourguet D. Bacillus thuringiensis. In Lichtfouse E, Navarrete M, Debaeke P, Veronique S, Alberola C. (editors) Applications in Agriculture and Insect Resistance Management - A Review Netherlands: Springer; 2009 pp 243–255
    [Google Scholar]
  13. Harwood CR. Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol 1992; 10:247–256 [View Article][PubMed]
    [Google Scholar]
  14. Ravel J, Fraser CM. Genomics at the genus scale. Trends Microbiol 2005; 13:95–97 [View Article]
    [Google Scholar]
  15. Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 2005; 56:845–857 [View Article]
    [Google Scholar]
  16. Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H. Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol 2017; 8:1490 [View Article]
    [Google Scholar]
  17. Nogi Y, Takami H, Horikoshi K. Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 2005; 55:2309–2315 [View Article]
    [Google Scholar]
  18. La Duc MT, Satomi M, Agata N, Venkateswaran K. gyrB as a phylogenetic discriminator for members of the Bacillus anthracis-cereus-thuringiensis group. J Microbiol Methods 2004; 56:383–394 [View Article][PubMed]
    [Google Scholar]
  19. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article]
    [Google Scholar]
  20. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of prokaryotes. Int J Syst Evol Microbiol 2019; 69:S1–S111 [View Article][PubMed]
    [Google Scholar]
  21. Wisotzkey JD, Jurtshuk P, Fox GE, Deinhard G, Poralla K. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 1992; 42:263–269 [View Article]
    [Google Scholar]
  22. Shida O, Takagi H, Kadowaki K, Komagata K. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 1996; 46:939–946 [View Article]
    [Google Scholar]
  23. Heyndrickx M, Lebbe L, Kersters K, Hoste B, De Wachter R et al. Proposal of Virgibacillus proomii sp. nov. and emended description of Virgibacillus pantothenticus (Proom and knight 1950) Heyndrickx et al. 1998. Int J Syst Evol Microbiol 1999; 49:1083–1090 [View Article]
    [Google Scholar]
  24. Wainø M, Tindall BJ, Schumann P, Ingvorsen K. Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 1999; 49:821–831 [View Article][PubMed]
    [Google Scholar]
  25. Fortina MG, Pukall R, Schumann P, Mora D, Parini C et al. Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Andersson et al. 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov. Int J Syst Evol Microbiol 2001; 51:447–455 [View Article]
    [Google Scholar]
  26. Yoon JH, Lee KC, Weiss N, Kho YH, Kang KH et al. Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of th. Int J Syst Evol Microbiol 2001; 51:1079–1086 [View Article][PubMed]
    [Google Scholar]
  27. Verma A, Pal Y, Ojha AK, Kumari M, Khatri I et al. Taxonomic insights into the phylogeny of Bacillus badius and proposal for its reclassification to the genus Pseudobacillus as Pseudobacillus badius comb. nov. and reclassification of Bacillus wudalianchiensis Liu et al., 2017 as Pseudobacillus wudalianchiensis comb. nov. Syst Appl Microbiol 2019; 42:360–372 [View Article][PubMed]
    [Google Scholar]
  28. Gupta RS, Patel S. Robust demarcation of the family Caryophanaceae (Planococcaceae) and its different genera including three novel genera based on phylogenomics and highly specific molecular signatures. Front Microbiol 2019; 10:2821 [View Article][PubMed]
    [Google Scholar]
  29. Ahmed I, Yokota A, Yamazoe A, Fujiwara T. Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 2007; 57:1117–1125 [View Article]
    [Google Scholar]
  30. Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 2020; 70:406–438 [View Article][PubMed]
    [Google Scholar]
  31. Wang Z, Wu M. A phylum-level bacterial phylogenetic marker database. Mol Biol Evol 2013; 30:1258–1262 [View Article][PubMed]
    [Google Scholar]
  32. Patel S, Gupta RS. Robust demarcation of fourteen different species groups within the genus Streptococcus based on genome-based phylogenies and molecular signatures. Infect Genet Evol 2018; 66:130–151 [View Article]
    [Google Scholar]
  33. Gupta RS, Lo B, Son J. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front Microbiol 2018; 9:67 [View Article]
    [Google Scholar]
  34. Adeolu M, Alnajar S, Naushad S, Gupta RS. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575–5599 [View Article][PubMed]
    [Google Scholar]
  35. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article]
    [Google Scholar]
  36. Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001; 18:691–699 [View Article]
    [Google Scholar]
  37. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article]
    [Google Scholar]
  38. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008; 25:1307–1320 [View Article][PubMed]
    [Google Scholar]
  39. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  40. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42:D633–D642 [View Article]
    [Google Scholar]
  41. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 2014; 42:D643–D648 [View Article]
    [Google Scholar]
  42. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  43. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  44. Gupta RS. Identification of conserved indels that are useful for classification and evolutionary studies. In Goodfellow M, Sutcliffe I, Chun J. (editors) Methods in Microbiology Oxford: Academic Press; 2014 pp 153–182
    [Google Scholar]
  45. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article][PubMed]
    [Google Scholar]
  46. Naushad HS, Lee B, Gupta RS. Conserved signature indels and signature proteins as novel tools for understanding microbial phylogeny and systematics: identification of molecular signatures that are specific for the phytopathogenic genera Dickeya, Pectobacterium and Brenneria. Int J Syst Evol Microbiol 2014; 64:366–383 [View Article]
    [Google Scholar]
  47. Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin’s views on classification. FEMS Microbiol Rev 2016; 40:520–553 [View Article][PubMed]
    [Google Scholar]
  48. Gupta RS. Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 1998; 62:1435–1491 [View Article]
    [Google Scholar]
  49. Rokas A, Holland PWH. Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 2000; 15:454–459 [View Article]
    [Google Scholar]
  50. Baldauf SL, Palmer JD. Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci U S A 1993; 90:11558–11562 [View Article]
    [Google Scholar]
  51. Bhandari V, Naushad HS, Gupta RS. Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution. Front Cell Infect Microbiol 2012; 2:98 [View Article]
    [Google Scholar]
  52. Wang H-F, Li Q-L, Zhang Y-G, Xiao M, Zhou X-K et al. Bacillus capparidis sp. nov., an endophytic bacterium isolated from roots of Capparis spinosa L. Int J Syst Evol Microbiol 2017; 67:282–287 [View Article][PubMed]
    [Google Scholar]
  53. Huang X-W, Niu Q-H, Zhou W, Zhang K-Q. Bacillus nematocida sp. nov., a novel bacterial strain with nematotoxic activity isolated from soil in Yunnan, China. Syst Appl Microbiol 2005; 28:323–327 [View Article]
    [Google Scholar]
  54. Nielsen P, Fritze D, Priest FG. Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 1995; 141:1745–1761 [View Article]
    [Google Scholar]
  55. Liu Y, Du J, Lai Q, Zeng R, Ye D et al. Proposal of nine novel species of the Bacillus cereus group. Int J Syst Evol Microbiol 2017; 67:2499–2508 [View Article]
    [Google Scholar]
  56. Liu Y, Lai Q, Du J, Shao Z. Genetic diversity and population structure of the Bacillus cereus group bacteria from diverse marine environments. Sci Rep 2017; 7:689 [View Article]
    [Google Scholar]
  57. Lechner S, Mayr R, Francis KP, Pruss BM, Kaplan T et al. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 1998; 48:1373–1382 [View Article]
    [Google Scholar]
  58. Scheldeman P, Rodríguez-Díaz M, Goris J, Pil A, De Clerck E et al. Bacillus farraginis sp. nov., Bacillus fortis sp. nov. and Bacillus fordii sp. nov., isolated at dairy farms. Int J Syst Evol Microbiol 2004; 54:1355–1364 [View Article][PubMed]
    [Google Scholar]
  59. Lim J-M, Jeon CO, Lee J-C, Ju YJ, Park D-J et al. Bacillus koreensis sp. nov., a spore-forming bacterium, isolated from the rhizosphere of willow roots in Korea. Int J Syst Evol Microbiol 2006; 56:59–63 [View Article][PubMed]
    [Google Scholar]
  60. Menes RJ, Machin EV, Iriarte A, Langleib M. Bacillus natronophilus sp. nov., an alkaliphilic bacterium isolated from a soda lake. Int J Syst Evol Microbiol 2020; 70:562–568 [View Article][PubMed]
    [Google Scholar]
  61. Zhao B, Lu W, Zhang S, Liu K, Yan Y et al. Reclassification of Bacillus saliphilus as Alkalicoccus saliphilus gen. nov., comb. nov., and description of Alkalicoccus halolimnae sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2017; 67:1557–1563 [View Article]
    [Google Scholar]
  62. Vishnuvardhan Reddy S, Thirumala M, Sasikala C, Venkata Ramana C. Salibacterium halotolerans gen. nov., sp. nov., a bacterium isolated from a salt pan, reclassification of Bacillus qingdaonensis as Salibacterium qingdaonense comb. nov. and Bacillus halochares as Salibacterium halochares comb. nov. Int J Syst Evol Microbiol 2015; 65:4270–4275 [View Article][PubMed]
    [Google Scholar]
  63. Xue Y, Zhang X, Zhou C, Zhao Y, Cowan DA et al. Caldalkalibacillus thermarum gen. nov., sp. nov., a novel alkalithermophilic bacterium from a hot spring in China. Int J Syst Evol Microbiol 2006; 56:1217–1221 [View Article]
    [Google Scholar]
  64. Coorevits A, Dinsdale AE, Halket G, Lebbe L, De Vos P et al. Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly 'thermoglucosidasius'); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus comb. nov.; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans comb. nov.; and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int J Syst Evol Microbiol 2012; 62:1470–1485 [View Article][PubMed]
    [Google Scholar]
  65. Jiang F, Cao S-J, Li Z-H, Fan H, Li H-F et al. Salisediminibacterium halotolerans gen. nov., sp. nov., a halophilic bacterium from soda lake sediment. Int J Syst Evol Microbiol 2012; 62:2127–2132 [View Article][PubMed]
    [Google Scholar]
  66. Barbour AG, Adeolu M, Gupta RS. Division of the genus Borrelia into two genera (corresponding to Lyme disease and relapsing fever groups) reflects their genetic and phenotypic distinctiveness and will lead to a better understanding of these two groups of microbes (Margos et al. (2016) there is inadequate evidence to support the division of the genus Borrelia. Int. J. Syst. Evol. Microbiol. DOI: 10.1099/ijsem.0.001717). Int J Syst Evol Microbiol 2017; 67:2058–2067 [View Article][PubMed]
    [Google Scholar]
  67. Gupta RS, Naushad S, Fabros R, Adeolu M. A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov. Antonie Van Leeuwenhoek 2016; 109:565–587 [View Article]
    [Google Scholar]
  68. Gao B, Gupta RS. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 2012; 76:66–112 [View Article]
    [Google Scholar]
  69. Jiang L, Wang D, Kim J-S, Lee JH, Kim D-H et al. Reclassification of genus Izhakiella into the family Erwiniaceae based on phylogenetic and genomic analyses. Int J Syst Evol Microbiol 2020; 70:3541–3546 [View Article]
    [Google Scholar]
  70. Gupta RS, Gao B. Phylogenomic analyses of clostridia and identification of novel protein signatures that are specific to the genus Clostridium sensu stricto (cluster I). Int J Syst Evol Microbiol 2009; 59:285–294 [View Article][PubMed]
    [Google Scholar]
  71. Dobritsa AP, Linardopoulou EV, Samadpour M. Transfer of 13 species of the genus Burkholderia to the genus Caballeronia and reclassification of Burkholderia jirisanensis as Paraburkholderia jirisanensis comb. nov. Int J Syst Evol Microbiol 2017; 67:3846–3853 [View Article][PubMed]
    [Google Scholar]
  72. Dobritsa AP, Samadpour M. Reclassification of Burkholderia insecticola as Caballeronia insecticola comb. nov. and reliability of conserved signature indels as molecular synapomorphies. Int J Syst Evol Microbiol 2019; 69:2057–2063 [View Article][PubMed]
    [Google Scholar]
  73. Wong SY, Paschos A, Gupta RS, Schellhorn HE. Insertion/deletion-based approach for the detection of Escherichia coli O157:H7 in freshwater environments. Environ Sci Technol 2014; 48:11462–11470 [View Article]
    [Google Scholar]
  74. Ahmod NZ, Gupta RS, Shah HN. Identification of a Bacillus anthracis specific indel in the yeaC gene and development of a rapid pyrosequencing assay for distinguishing B. anthracis from the B. cereus group. J Microbiol Methods 2011; 87:278–285 [View Article]
    [Google Scholar]
  75. Griffiths E, Petrich AK, Gupta RS. Conserved indels in essential proteins that are distinctive characteristics of Chlamydiales and provide novel means for their identification. Microbiology 2005; 151:2647–2657 [View Article]
    [Google Scholar]
  76. Gao B, Gupta RS. Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria. Int J Syst Evol Microbiol 2005; 55:2401–2412 [View Article]
    [Google Scholar]
  77. Cohn F. “Untersuchungen über Bacterien”. In Cohn F. editor Beiträge zur Biologie der Pflanzen 1, 1875 1 (Heft 2). Breslau: Max Müller; 1872 pp 127–224
    [Google Scholar]
  78. Skerman VBD, Sneath PHA, McGowan V. Approved Lists of bacterial names. Int J Syst Evol Microbiol 1980; 30:225–420 [View Article]
    [Google Scholar]
  79. Romano I, Lama L, Nicolaus B, Gambacorta A, Giordano A et al. Bacillus saliphilus sp. nov., isolated from a mineral pool in Campania, Italy. Int J Syst Evol Microbiol 2005; 55:159–163 [View Article][PubMed]
    [Google Scholar]
  80. Carrasco IJ, Márquez MC, Xue Y, Ma Y, Cowan DA et al. Bacillus chagannorensis sp. nov., a moderate halophile from a soda lake in Inner Mongolia, China. Int J Syst Evol Microbiol 2007; 57:2084–2088 [View Article]
    [Google Scholar]
  81. Zhai L, Liao T, Xue Y, Ma Y. Bacillus daliensis sp. nov., an alkaliphilic, Gram-positive bacterium isolated from a soda lake. Int J Syst Evol Microbiol 2012; 62:949–953 [View Article][PubMed]
    [Google Scholar]
  82. Subhash Y, Sasikala C, Ramana CV. Bacillus luteus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64:1580–1586 [View Article]
    [Google Scholar]
  83. Zhang S, Li Z, Yan Y, Zhang C, Li J et al. Bacillus urumqiensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2016; 66:2305–2312 [View Article]
    [Google Scholar]
  84. Banat IM, Marchant R, Rahman TJ. Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov. Int J Syst Evol Microbiol 2004; 54:2197–2201 [View Article][PubMed]
    [Google Scholar]
  85. Nishida A, Miyamoto H, Horiuchi S, Watanabe R, Morita H et al. Bacillus hisashii sp. nov., isolated from the caeca of gnotobiotic mice fed with thermophile-fermented compost. Int J Syst Evol Microbiol 2015; 65:3944–3949 [View Article]
    [Google Scholar]
  86. Poudel P, Miyamoto H, Miyamoto H, Okugawa Y, Tashiro Y et al. Thermotolerant Bacillus kokeshiiformis sp. nov. isolated from marine animal resources compost. Int J Syst Evol Microbiol 2014; 64:2668–2674 [View Article]
    [Google Scholar]
  87. Lin S-Y, Hameed A, Liu Y-C, Wen C-Z, Lai W-A et al. Bacillus lycopersici sp. nov., isolated from a tomato plant (Solanum lycopersicum L.). Int J Syst Evol Microbiol 2015; 65:2085–2090 [View Article]
    [Google Scholar]
  88. Baltaci MO, Ay H, Akbulut S, Adiguzel G, Albayrak S et al. Bacillus pasinlerensis sp. nov., a thermophilic bacterium isolated from a hot spring in Turkey. Int J Syst Evol Microbiol 2020; 70:3865–3871 [View Article][PubMed]
    [Google Scholar]
  89. Combet-Blanc Y, Ollivier B, Streicher C, Patel BK, Dwivedi PP et al. Bacillus thermoamylovorans sp. nov., a moderately thermophilic and amylolytic bacterium. Int J Syst Bacteriol 1995; 45:9–16 [View Article][PubMed]
    [Google Scholar]
  90. Coorevits A, Logan NA, Dinsdale AE, Halket G, Scheldeman P et al. Bacillus thermolactis sp. nov., isolated from dairy farms, and emended description of Bacillus thermoamylovorans. Int J Syst Evol Microbiol 2011; 61:1954–1961 [View Article]
    [Google Scholar]
  91. Xue Y, Ventosa A, Wang X, Ren P, Zhou P et al. Bacillus aidingensis sp. nov., a moderately halophilic bacterium isolated from Ai-Ding salt lake in China. Int J Syst Evol Microbiol 2008; 58:2828–2832 [View Article]
    [Google Scholar]
  92. Lim J-M, Jeon CO, Lee S-M, Lee J-C, Xu L-H et al. Bacillus salarius sp. nov., a halophilic, spore-forming bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 2006; 56:373–377 [View Article][PubMed]
    [Google Scholar]
  93. Sultanpuram VR, Mothe T, Chintalapati S, Chintalapati VR. Bacillus catenulatus sp. nov., an alkalitolerant bacterium isolated from a soda lake. Arch Microbiol 2017; 199:1391–1397 [View Article]
    [Google Scholar]
  94. Baesman SM, Stolz JF, Kulp TR, Oremland RS. Enrichment and isolation of Bacillus beveridgei sp. nov., a facultative anaerobic haloalkaliphile from Mono Lake, California, that respires oxyanions of tellurium, selenium, and arsenic. Extremophiles 2009; 13:695–705 [View Article]
    [Google Scholar]
  95. Switzer Blum J, Burns Bindi A, Buzzelli J, Stolz JF, Oremland RS. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 1998; 171:19–30 [View Article][PubMed]
    [Google Scholar]
  96. Borsodi AK, Marialigeti K, Szabo G, Palatinszky M, Pollak B et al. Bacillus aurantiacus sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from Hungarian soda lakes. Int J Syst Evol Microbiol 2008; 58:845–851 [View Article]
    [Google Scholar]
  97. Liu B, Liu G-H, Wang X-Y, Wang J-P, Zhu Y-J et al. Bacillus populi sp. nov. isolated from Populus euphratica rhizosphere soil of the Taklamakan desert. Int J Syst Evol Microbiol 2018; 68:155–159 [View Article]
    [Google Scholar]
  98. Ten LN, Baek S-H, Im W-T, Liu Q-M, Aslam Z et al. Bacillus panaciterrae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2006; 56:2861–2866 [View Article][PubMed]
    [Google Scholar]
  99. Rao MPN, Dong ZY, Zhang H, Niu XK, Zhang K et al. Bacillus antri sp. nov., isolated from cave soil. Int J Syst Evol Microbiol 2019; 69:3315–3317
    [Google Scholar]
  100. Ajithkumar VP, Ajithkumar B, Iriye R, Sakai T. Bacillus funiculus sp. nov., novel filamentous isolates from activated sludge. Int J Syst Evol Microbiol 2002; 52:1141–1144 [View Article][PubMed]
    [Google Scholar]
  101. Nguyen TM, Kim J. Bacillus polymachus sp. nov., with a broad range of antibacterial activity, isolated from forest topsoil samples by using a modified culture method. Int J Syst Evol Microbiol 2015; 65:704–709 [View Article]
    [Google Scholar]
  102. Vishnuvardhan Reddy S, Thirumala M, Farooq M. Bacillus caseinilyticus sp. nov., an alkali- and thermotolerant bacterium isolated from a soda lake. Int J Syst Evol Microbiol 2015; 65:2441–2446 [View Article]
    [Google Scholar]
  103. Aino K, Hirota K, Matsuno T, Morita N, Nodasaka Y et al. Bacillus polygoni sp. nov., a moderately halophilic, non-motile obligate alkaliphile isolated from indigo balls. Int J Syst Evol Microbiol 2008; 58:120–124 [View Article]
    [Google Scholar]
  104. Agnew MD, Koval SF, Jarrell KF. Isolation and characterization of novel alkaliphiles from Bauxite-Processing waste and description of Bacillus vedderi sp. nov., a new obligate alkaliphile. Syst Appl Microbiol 1995; 18:221–230 [View Article]
    [Google Scholar]
  105. Heyrman J, Rodríguez-Díaz M, Devos J, Felske A, Logan NA et al. Bacillus arenosi sp. nov., Bacillus arvi sp. nov. and Bacillus humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 2005; 55:111–117 [View Article][PubMed]
    [Google Scholar]
  106. Ding M-J, Shang N-J, Xiao Z-X, Shao F, Liu L et al. Bacillus aciditolerans sp. nov., isolated from paddy soil. Int J Syst Evol Microbiol 2019; 69:1155–1161 [View Article][PubMed]
    [Google Scholar]
  107. Dominguez-Moñino I, Jurado V, Gonzalez-Pimentel JL, Miller AZ, Hermosin B et al. Bacillus onubensis sp. nov., isolated from the air of two Andalusian caves. Syst Appl Microbiol 2018; 41:167–172 [View Article][PubMed]
    [Google Scholar]
  108. Son J-S, Hwang Y-J, Lee S-Y, Ghim S-Y. Bacillus salidurans sp. nov., isolated from salt-accumulated pepper rhizospheric soil. Int J Syst Evol Microbiol 2019; 69:116–122 [View Article][PubMed]
    [Google Scholar]
  109. Logan NA, Lebbe L, Verhelst A, Goris J, Forsyth G et al. Bacillus luciferensis sp. nov., from volcanic soil on Candlemas Island, South Sandwich archipelago. Int J Syst Evol Microbiol 2002; 52:1985–1989 [View Article][PubMed]
    [Google Scholar]
  110. Peak KK, Duncan KE, Veguilla W, Luna VA, King DS et al. Bacillus acidiceler sp. nov., isolated from a forensic specimen, containing Bacillus anthracis pX02 genes. Int J Syst Evol Microbiol 2007; 57:2031–2036 [View Article][PubMed]
    [Google Scholar]
  111. Pan T, He H, Wang X, Shen Y, Zhao J et al. Bacillus solisilvae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:4449–4455 [View Article][PubMed]
    [Google Scholar]
  112. Kuhnigk T, Borst EM, Breunig A, König H, Collins MD et al. Bacillus oleronius sp.nov., a member of the hindgut flora of the termite Reticulitermes santonensis (Feytaud). Can J Microbiol 1995; 41:699–706 [View Article][PubMed]
    [Google Scholar]
  113. Heyndrickx M, Coorevits A, Scheldeman P, Lebbe L, Schumann P et al. Emended descriptions of Bacillus sporothermodurans and Bacillus oleronius with the inclusion of dairy farm isolates of both species. Int J Syst Evol Microbiol 2012; 62:307–314 [View Article][PubMed]
    [Google Scholar]
  114. Pettersson B, Lembke F, Hammer P, Stackebrandt E, Priest FG. Bacillus sporothermodurans, a new species producing highly heat-resistant endospores. Int J Syst Bacteriol 1996; 46:759–764 [View Article][PubMed]
    [Google Scholar]
  115. Ma K, Chen X, Guo X, Wang Y, Wang H et al. Bacillus vini sp. nov. isolated from alcohol fermentation pit mud. Arch Microbiol 2016; 198:559–564 [View Article][PubMed]
    [Google Scholar]
  116. Heyndrickx M, Logan NA, Lebbe L, Rodríguez-Díaz M, Forsyth G et al. Bacillus galactosidilyticus sp. nov., an alkali-tolerant beta-galactosidase producer. Int J Syst Evol Microbiol 2004; 54:617–621 [View Article][PubMed]
    [Google Scholar]
  117. Bibi F, Chung EJ, Jeon CO, Chung YR. Bacillus graminis sp. nov., an endophyte isolated from a coastal dune plant. Int J Syst Evol Microbiol 2011; 61:1567–1571 [View Article][PubMed]
    [Google Scholar]
  118. Gibson T. The urea-decomposing microflora of soils. I. Description and classification of the organisms. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 1935; 92:364–380
    [Google Scholar]
  119. Choi J-H, Cha C-J. Bacillus panacisoli sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 2014; 64:901–906 [View Article][PubMed]
    [Google Scholar]
  120. Heyndrickx M, Scheldeman P, Forsyth G, Lebbe L, Rodríguez-Díaz M et al. Bacillus ruris sp. nov., from dairy farms. Int J Syst Evol Microbiol 2005; 55:2551–2554 [View Article][PubMed]
    [Google Scholar]
  121. Liu B, Liu G-H, Sengonca C, Schumann P, Che J-M et al. Bacillus wuyishanensis sp. nov., isolated from rhizosphere soil of a medical plant, Prunella vulgaris. Int J Syst Evol Microbiol 2015; 65:2030–2035 [View Article][PubMed]
    [Google Scholar]
  122. Lee J-C, Lee GS, Park D-J, Kim C-J. Bacillus alkalitelluris sp. nov., an alkaliphilic bacterium isolated from sandy soil. Int J Syst Evol Microbiol 2008; 58:2629–2634 [View Article][PubMed]
    [Google Scholar]
  123. Amoozegar MA, Didari M, Bagheri M, Fazeli SAS, Schumann P et al. Bacillus salsus sp. nov., a halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2013; 63:3324–3329 [View Article][PubMed]
    [Google Scholar]
  124. Logan NA, Lebbe L, Verhelst A, Goris J, Forsyth G et al. Bacillus shackletonii sp. nov., from volcanic soil on Candlemas Island, South Sandwich archipelago. Int J Syst Evol Microbiol 2004; 54:373–376 [View Article][PubMed]
    [Google Scholar]
  125. Niu L, Xiong M, Zhang J, Xiang Y, Song L et al. Bacillus camelliae sp. nov., isolated from Pu'er tea. Int J Syst Evol Microbiol 2018; 68:564–569 [View Article][PubMed]
    [Google Scholar]
  126. Jordan EO A report on certain species of bacteria observed in sewage. In: Sedgewick WT, editor. A Report of the Biological Work of the Lawrence Experiment Station, Including an Account of Methods Employed and Results Obtained in the Microscopical and Bacteriological Investigation of Sewage and Water. Report on Water Supply and Sewerage (Part II). Massachusetts: The Report of the Massachusetts Board of Health; 1890821–844
  127. Ma L, Xi J-Q, Cao Y-H, Wang X-Y, Zheng S-C et al. Bacillus endozanthoxylicus sp. nov., an endophytic bacterium isolated from Zanthoxylum bungeanum Maxim leaves. Int J Syst Evol Microbiol 2017; 67:3699–3705 [View Article][PubMed]
    [Google Scholar]
  128. Venkateswaran K, Kempf M, Chen F, Satomi M, Nicholson W et al. Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are gamma-radiation resistant. Int J Syst Evol Microbiol 2003; 53:165–172 [View Article][PubMed]
    [Google Scholar]
  129. Zhang X-X, Gao J-S, Zhang L, Zhang C-W, Ma X-T et al. Bacillus oryzisoli sp. nov., isolated from rice rhizosphere. Int J Syst Evol Microbiol 2016; 66:3432–3436 [View Article][PubMed]
    [Google Scholar]
  130. Tuo L, Liu F, Yan X-R, Liu Y. Bacillus taxi sp. nov., a novel endophytic bacterium isolated from root of Taxus chinensis (Pilger) Rehd. Int J Syst Evol Microbiol 2020; 70:481–486 [View Article][PubMed]
    [Google Scholar]
  131. De Bary A. Vergleichende Morphologie und Biologie der Pilze, Mycetozoen, und Bacterien Leipzig: Wilhelm Engelmann; 1884
    [Google Scholar]
  132. You Z-Q, Li J, Qin S, Tian X-P, Wang F-Z et al. Bacillus abyssalis sp. nov., isolated from a sediment of the South China Sea. Antonie Van Leeuwenhoek 2013; 103:963–969 [View Article][PubMed]
    [Google Scholar]
  133. Shivaji S, Chaturvedi P, Begum Z, Pindi PK, Manorama R et al. Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Int J Syst Evol Microbiol 2009; 59:2977–2986 [View Article][PubMed]
    [Google Scholar]
  134. Reva ON, Smirnov VV, Pettersson B, Priest FG. Bacillus endophyticus sp. nov., isolated from the inner tissues of cotton plants (Gossypium sp.). Int J Syst Evol Microbiol 2002; 52:101–107 [View Article][PubMed]
    [Google Scholar]
  135. Sonalkar VV, Mawlankar R, Venkata Ramana V, Joseph N, Shouche YS et al. Bacillus filamentosus sp. nov., isolated from sediment sample. Antonie Van Leeuwenhoek 2015; 107:433–441 [View Article][PubMed]
    [Google Scholar]
  136. Priest FG, Goodfellow M, Todd C. A numerical classification of the genus Bacillus. J Gen Microbiol 1988; 134:1847–1882 [View Article][PubMed]
    [Google Scholar]
  137. Chandna P, Mayilraj S, Kuhad RC. Bacillus paraflexus sp. nov., isolated from compost. Int J Syst Evol Microbiol 2013; 63:4735–4743 [View Article][PubMed]
    [Google Scholar]
  138. Xi J, He L-Y, Huang Z, Sheng X-F. Bacillus qingshengii sp. nov., a rock-weathering bacterium isolated from weathered rock surface. Int J Syst Evol Microbiol 2014; 64:2473–2479 [View Article][PubMed]
    [Google Scholar]
  139. Liu B, Liu G-H, Sengonca C, Schumann P, Wang M-K et al. Bacillus taiwanensis sp. nov., isolated from a soil sample from Taiwan. Int J Syst Evol Microbiol 2015; 65:2078–2084 [View Article][PubMed]
    [Google Scholar]
  140. Dong K, Lee S. Bacillus kyonggiensis sp. nov., isolated from soil of a lettuce field. J Microbiol 2011; 49:776–781 [View Article][PubMed]
    [Google Scholar]
  141. Pettersson B, de Silva SK, Uhlén M, Priest FG. Bacillus siralis sp. nov., a novel species from silage with a higher order structural attribute in the 16S rRNA genes. Int J Syst Evol Microbiol 2000; 50:2181–2187 [View Article][PubMed]
    [Google Scholar]
  142. Kosowski K, Schmidt M, Pukall R, Hause G, Kämpfer P et al. Bacillus pervagus sp. nov. and Bacillus andreesenii sp. nov., isolated from a composting reactor. Int J Syst Evol Microbiol 2014; 64:88–94 [View Article][PubMed]
    [Google Scholar]
  143. Yu Y, Li H-R, Zeng Y-X, Chen B. Bacillus beringensis sp. nov., a psychrotolerant bacterium isolated from the Bering Sea. Antonie Van Leeuwenhoek 2011; 99:551–557 [View Article][PubMed]
    [Google Scholar]
  144. Shivani Y, Subhash Y, Dave Bharti P, Sasikala C, Ramana CV. Bacillus crescens sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65:2531–2536 [View Article][PubMed]
    [Google Scholar]
  145. Zhang L, Wang Y, Dai J, Tang Y, Yang Q et al. Bacillus korlensis sp. nov., a moderately halotolerant bacterium isolated from a sand soil sample in China. Int J Syst Evol Microbiol 2009; 59:1787–1792 [View Article][PubMed]
    [Google Scholar]
  146. Ramasamy D, Lagier J-C, Gorlas A, Raoult D, Fournier P-E. Non contiguous-finished genome sequence and description of Bacillus massiliosenegalensis sp. nov. Stand Genomic Sci 2013; 8:264–278 [View Article][PubMed]
    [Google Scholar]
  147. Yoon J-H, Kim I-G, Kang KH, Oh T-K, Park Y-H. Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2003; 53:1297–1303 [View Article][PubMed]
    [Google Scholar]
  148. Dastager SG, Mawlankar R, Tang S-K, Srinivasan K, Ramana VV et al. Bacillus enclensis sp. nov., isolated from sediment sample. Antonie Van Leeuwenhoek 2014; 105:199–206 [View Article][PubMed]
    [Google Scholar]
  149. Hong SW, Kwon S-W, Kim S-J, Kim SY, Kim JJ et al. Bacillus oryzaecorticis sp. nov., a moderately halophilic bacterium isolated from rice husks. Int J Syst Evol Microbiol 2014; 64:2786–2791 [View Article][PubMed]
    [Google Scholar]
  150. Noguchi H, Uchino M, Shida O, Takano K, Nakamura LK et al. Bacillus vietnamensis sp. nov., a moderately halotolerant, aerobic, endospore-forming bacterium isolated from Vietnamese fish sauce. Int J Syst Evol Microbiol 2004; 54:2117–2120 [View Article][PubMed]
    [Google Scholar]
  151. Pichinoty F, De Barjac H, Mandel M, Asselineau J. Description of Bacillus azotoformans sp. nov. Int J Syst Bacteriol 1983; 33:662 [View Article]
    [Google Scholar]
  152. Bao P, Xiao K-Q, Wang H-J, Xu H, Xu P-P et al. Characterization and potential applications of a selenium nanoparticle producing and nitrate reducing bacterium Bacillus oryziterrae sp. nov. Sci Rep 2016; 6:34054 [View Article][PubMed]
    [Google Scholar]
  153. Sun L, Chen Y, Tian W, Yao L, Chen Z et al. Bacillus acidinfaciens sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2019; 69:1075–1080 [View Article][PubMed]
    [Google Scholar]
  154. Yang G, Chen M, Yu Z, Lu Q, Zhou S. Bacillus composti sp. nov. and Bacillus thermophilus sp. nov., two thermophilic, Fe(III)-reducing bacteria isolated from compost. Int J Syst Evol Microbiol 2013; 63:3030–3036 [View Article][PubMed]
    [Google Scholar]
  155. Yu Z, Wang Y, Qin D, Yang G, Zhou S. Bacillus sediminis sp. nov., isolated from an electroactive biofilm. Antonie Van Leeuwenhoek 2013; 104:1109–1116 [View Article][PubMed]
    [Google Scholar]
  156. Díez-Méndez A, Rivas R, Mateos PF, Martínez-Molina E, Santín PJ et al. Bacillus terrae sp. nov. isolated from Cistus ladanifer rhizosphere soil. Int J Syst Evol Microbiol 2017; 67:1478–1481 [View Article][PubMed]
    [Google Scholar]
  157. Spanka R, Fritze D. Bacillus cohnii sp. nov., a new, obligately alkaliphilic, oval-spore-forming Bacillus species with ornithine and aspartic acid instead of diaminopimelic acid in the cell wall. Int J Syst Bacteriol 1993; 43:150–156 [View Article][PubMed]
    [Google Scholar]
  158. Chen Y-G, Hu S-P, Tang S-K, He J-W, Xiao J-Q et al. Bacillus zhanjiangensis sp. nov., isolated from an oyster in South China Sea. Antonie Van Leeuwenhoek 2011; 99:473–480 [View Article][PubMed]
    [Google Scholar]
  159. Hammer BW. Bacteriological studies on the coagulation of evaporated milk. Iowa Agricultural and Home Economics Experimental Station Research Bulletin 1915; 2:Article 1
    [Google Scholar]
  160. De Clerck E, Rodriguez-Diaz M, Forsyth G, Lebbe L, Logan NA et al. Polyphasic characterization of Bacillus coagulans strains, illustrating heterogeneity within this species, and emended description of the species. Syst Appl Microbiol 2004; 27:50–60 [View Article][PubMed]
    [Google Scholar]
  161. Jung MY, Kim J-S, Chang Y-H. Bacillus acidiproducens sp. nov., vineyard soil isolates that produce lactic acid. Int J Syst Evol Microbiol 2009; 59:2226–2231 [View Article][PubMed]
    [Google Scholar]
  162. Ten LN, IM W-T, Baek S-H, Lee J-S, Oh H-M et al. Bacillus ginsengihumi sp. nov., a novel species isolated from soil of a ginseng field in pocheon Province, South Korea. J Microbiol Biotechnol 2006; 16:1554–1560
    [Google Scholar]
  163. Singh H, Kaur M, Sharma S, Kaur L, Mishra S et al. Bacillus alkalilacus sp. nov., isolated from a sediment sample from a lake in India. Int J Syst Evol Microbiol 2018; 68:1665–1671 [View Article][PubMed]
    [Google Scholar]
  164. Mo K, Huang H, Bao S, Hu Y. Bacillus caeni sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2020; 70:1503–1507 [View Article][PubMed]
    [Google Scholar]
  165. Borsodi AK, Tóth E, Aszalós JM, Bárány Ágnes, Schumann P et al. Bacillus kiskunsagensis sp. nov., a novel alkaliphilic and moderately halophilic bacterium isolated from soda soil. Int J Syst Evol Microbiol 2017; 67:3490–3495 [View Article][PubMed]
    [Google Scholar]
  166. Shin B, Park C, Lee B-H, Lee K-E, Park W. Bacillus miscanthi sp. nov., a alkaliphilic bacterium from the rhizosphere of Miscanthus sacchariflorus. Int J Syst Evol Microbiol 2020; 70:1843–1849 [View Article][PubMed]
    [Google Scholar]
  167. Song L, Liu H, Wang J, Huang Y, Dai X et al. Bacillus oceani sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016; 66:796–800 [View Article][PubMed]
    [Google Scholar]
  168. Liu B, Liu G-H, Wang X-Y, Wang J-P, Chen Z et al. Bacillus urbisdiaboli sp. nov., isolated from soil sampled in Xinjiang. Int J Syst Evol Microbiol 2019; 69:1591–1596 [View Article][PubMed]
    [Google Scholar]
  169. Liu Y, Li N, Eom MK, Schumann P, Zhang X et al. Bacillus ciccensis sp. nov., isolated from maize (Zea mays L.) seeds. Int J Syst Evol Microbiol 2017; 67:4606–4611 [View Article][PubMed]
    [Google Scholar]
  170. Shi R, Yin M, Tang S-K, Lee J-C, Park D-J et al. Bacillus luteolus sp. nov., a halotolerant bacterium isolated from a salt field. Int J Syst Evol Microbiol 2011; 61:1344–1349 [View Article][PubMed]
    [Google Scholar]
  171. Hirota K, Nishita M, Tu Z, Matsuyama H, Yumoto I. Bacillus fermenti sp. nov., an indigo-reducing obligate alkaliphile isolated from indigo fermentation liquor for dyeing. Int J Syst Evol Microbiol 2018; 68:1123–1129 [View Article][PubMed]
    [Google Scholar]
  172. Ko KS, Oh WS, Lee MY, Lee JH, Lee H et al. Bacillus infantis sp. nov. and Bacillus idriensis sp. nov., isolated from a patient with neonatal sepsis. Int J Syst Evol Microbiol 2006; 56:2541–2544 [View Article][PubMed]
    [Google Scholar]
  173. Wang H-L, Zhang J, Sun L. Bacillus iocasae sp. nov., isolated from Pacmanus hydrothermal field, Manus Basin. Int J Syst Evol Microbiol 2017; 67:3547–3552 [View Article][PubMed]
    [Google Scholar]
  174. Singh H, Kaur M, Kaur L, Sharma S, Mishra S et al. Bacillus lacus sp. nov., isolated from a water sample of a salt lake in India. Int J Syst Evol Microbiol 2018; 68:801–809 [View Article][PubMed]
    [Google Scholar]
  175. Gupta V, Singh PK, Korpole S, Tanuku NRS, Pinnaka AK. Bacillus mangrovi sp. nov., isolated from a sediment sample from a mangrove forest. Int J Syst Evol Microbiol 2017; 67:2219–2224 [View Article][PubMed]
    [Google Scholar]
  176. Nguyen N-L, Kim Y-J, Hoang V-A, Min JW, Liang Z-Q et al. Bacillus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2013; 63:855–860 [View Article][PubMed]
    [Google Scholar]
  177. Yu L, Tang X, Wei S, Qiu Y, Xu X et al. Two novel species of the family Bacillaceae: Oceanobacillus piezotolerans sp. nov. and Bacillus piezotolerans sp. nov., from deep-sea sediment samples of Yap Trench. Int J Syst Evol Microbiol 2019; 69:3022–3030 [View Article][PubMed]
    [Google Scholar]
  178. Ten LN, Baek S-H, Im W-T, Larina LL, Lee J-S et al. Bacillus pocheonensis sp. nov., a moderately halotolerant, aerobic bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2007; 57:2532–2537 [View Article][PubMed]
    [Google Scholar]
  179. Liu Y, Yu M, Zhang X-H. Bacillus alkalitolerans sp. nov., isolated from marine sediment near a hydrothermal vent. Int J Syst Evol Microbiol 2018; 68:1184–1189 [View Article][PubMed]
    [Google Scholar]
  180. Seuylemezian A, Ott L, Wolf S, Fragante J, Yip O et al. Bacillus glennii sp. nov. and Bacillus saganii sp. nov., isolated from the vehicle assembly building at Kennedy Space Center where the Viking spacecraft were assembled. Int J Syst Evol Microbiol 2020; 70:71–76 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004475
Loading
/content/journal/ijsem/10.1099/ijsem.0.004475
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error