1887

Abstract

In 2018, Nouioui transferred and to as subsp. and subsp. on the basis of digital DNA–DNA hybridization (dDDH) values. These two new subspecies were validated in the same year. However, we found that the genome (GenBank/ENA/DDBJ accession number JGZJ01000000) of used by Nouioui in the dDDH analysis cannot represent . So, the taxonomic relationship between , and should be re-examined. DSM 20433 had 88.7–89.0 % average nucleotide identity (ANI) values and 37.5–38.0 % dDDH values to the type strains of and , respectively, less than the threshold for species demarcation, confirming that represents a different species from and . The ANI values and dDDH values between the type strains of and were 96.7–96.9 % and 73.0–73.3 %, respectively, greater than the threshold for species demarcation, confirming that they represent the same species. Relatively low dDDH values (less than the 79–80 % threshold for subspecies demarcation) between the type strains of and indicated that can be considered as a subspecies of . On the basis of the results presented here, (i) and should not be transferred to ; (ii) we propose Biavati 1992 as a later heterotypic synonym of Watabe 1983 and as a new subspecies of , for which the name subsp. subsp. nov. is proposed.

Funding
This study was supported by the:
  • Chun Tao Gu , National Natural Science Foundation of China , (Award no. 31471594)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004474
2020-09-22
2020-12-01
Loading full text...

Full text loading...

References

  1. Watabe J, Benno Y, Mitsuoka T. Bifidobacterium gallinarum sp. nov.: a new species isolated from the Ceca of chickens. Int J Syst Bacteriol 1983; 33:127–132 [CrossRef]
    [Google Scholar]
  2. Biavati B, Mattarelli P, Crociani F. Bifidobacterium saeculare: a new species isolated from feces of rabbit. Syst Appl Microbiol 1991; 14:389–392 [CrossRef]
    [Google Scholar]
  3. Validation List no. 41 Validation of the publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol 1992; 42:327–328 [CrossRef]
    [Google Scholar]
  4. Trovatelli LD, Crociani F, Pedinotti M, Scardovi V. Bifidobacterium pullorum sp. nov.: a new species isolated from chicken feces and a related group of bifidobacteria isolated from rabbit feces. Arch Microbiol 1974; 98:187–198 [CrossRef][PubMed]
    [Google Scholar]
  5. Skerman VBD, Sneath PHA, McGowan V. Approved lists of bacterial names. Int J Syst Evol Microbiol 1980; 30:225–420 [CrossRef]
    [Google Scholar]
  6. Duranti S, Mangifesta M, Lugli GA, Turroni F, Anzalone R et al. Bifidobacterium vansinderenii sp. nov., isolated from faeces of emperor tamarin (Saguinus imperator). Int J Syst Evol Microbiol 2017; 67:3987–3995 [CrossRef][PubMed]
    [Google Scholar]
  7. Lugli GA, Mangifesta M, Duranti S, Anzalone R, Milani C et al. Phylogenetic classification of six novel species belonging to the genus Bifidobacterium comprising Bifidobacterium anseris sp. nov., Bifidobacterium criceti sp. nov., Bifidobacterium imperatoris sp. nov., Bifidobacterium italicum sp. nov., Bifidobacterium margollesii sp. nov. and Bifidobacterium parmae sp. nov. Syst Appl Microbiol 2018; 41:173–183 [CrossRef][PubMed]
    [Google Scholar]
  8. Duranti S, Lugli GA, Napoli S, Anzalone R, Milani C et al. Characterization of the phylogenetic diversity of five novel species belonging to the genus Bifidobacterium: Bifidobacterium castoris sp. nov., Bifidobacterium callimiconis sp. nov., Bifidobacterium goeldii sp. nov., Bifidobacterium samirii sp. nov. and Bifidobacterium dolichotidis sp. nov. Int J Syst Evol Microbiol 2019; 69:1288–1298 [CrossRef][PubMed]
    [Google Scholar]
  9. Duranti S, Lugli GA, Viappiani A, Mancabelli L, Alessandri G et al. Characterization of the phylogenetic diversity of two novel species belonging to the genus Bifidobacterium: Bifidobacterium cebidarum sp. nov. and Bifidobacterium leontopitheci sp. nov. Int J Syst Evol Microbiol 2020; 70:2288–2297 [CrossRef][PubMed]
    [Google Scholar]
  10. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:9 [CrossRef][PubMed]
    [Google Scholar]
  11. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2018; 68:3379–3393 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim BJ, Kim HY, Yun YJ, Kim BJ, Kook YH. Differentiation of Bifidobacterium species using partial RNA polymerase β-subunit (rpoB) gene sequences. Int J Syst Evol Microbiol 2010; 60:2697–2704 [CrossRef][PubMed]
    [Google Scholar]
  13. Berthoud H, Chavagnat F, Haueter M, Casey MG. Comparison of partial gene sequences encoding a phosphoketolase for the identification of bifidobacteria. LWT-Food Sci Technol 2005; 38:101–105 [CrossRef]
    [Google Scholar]
  14. Ventura M, Canchaya C, Bernini V, Del Casale A, Dellaglio F et al. Genetic characterization of the Bifidobacterium breve UCC 2003 hrcA locus. Appl Environ Microbiol 2005; 71:8998–9007 [CrossRef][PubMed]
    [Google Scholar]
  15. Ventura M, Canchaya C, Casale AD, Dellaglio F, Neviani E et al. Analysis of bifidobacterial evolution using a multilocus approach. Int J Syst Evol Microbiol 2006; 56:2783–2792 [CrossRef][PubMed]
    [Google Scholar]
  16. Milani C, Lugli GA, Turroni F, Mancabelli L, Duranti S et al. Evaluation of bifidobacterial community composition in the human gut by means of a targeted amplicon sequencing (ITS) protocol. FEMS Microbiol Ecol 2014; 90:493–503 [CrossRef][PubMed]
    [Google Scholar]
  17. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  18. Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F et al. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl Environ Microbiol 2014; 80:6290–6302 [CrossRef][PubMed]
    [Google Scholar]
  19. Lugli GA, Milani C, Turroni F, Duranti S, Ferrario C et al. Investigation of the evolutionary development of the genus Bifidobacterium by comparative genomics. Appl Environ Microbiol 2014; 80:6383–6394 [CrossRef][PubMed]
    [Google Scholar]
  20. Sun Z, Zhang W, Guo C, Yang X, Liu W et al. Comparative genomic analysis of 45 type strains of the genus Bifidobacterium: a snapshot of its genetic diversity and evolution. PLoS One 2015; 10:e0117912 [CrossRef][PubMed]
    [Google Scholar]
  21. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  23. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  26. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [CrossRef]
    [Google Scholar]
  27. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [CrossRef][PubMed]
    [Google Scholar]
  28. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  29. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004474
Loading
/content/journal/ijsem/10.1099/ijsem.0.004474
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error