1887

Abstract

A bacterial strain designated as RZME10 was isolated from a L. root collected in Spain. Results of analysis of the 16S rRNA gene sequence showed that this strain belongs to the genus with ATCC 51759 being the most closely related species with 99.9 % sequence similarity. The similarity values of the , , , and genes between strain RZME10 and ATCC 51759 were 93.5, 90.0, 88.7, 87.9 and 90.1 %, respectively. The estimated average nucleotide identity using and digital DNA–DNA hybridization values between these two strains were 80.4 and 30.2 %, respectively. The major fatty acids of strain RZME10 are those from summed feature 8 (C ω6/C ω7) and C. Pathogenicity tests on tomato and carrot roots showed that strain RZME10 was not able to induce plant tumours. Based on the results of genomic, chemotaxonomic and phenotypic analyses, we propose that strain RZME10 represents a novel species named sp. nov. (type strain RZME10=CECT 9795=LMG 31257).

Funding
This study was supported by the:
  • MINECO (Award AGL2013-48098-P)
    • Principle Award Recipient: Esther Menéndez
  • Universidad de Salamanca
    • Principle Award Recipient: Jose David Flores-Felix
  • MINECO (Award AGL2013-48098-P)
    • Principle Award Recipient: Encarna Velázquez
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004441
2020-09-10
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/10/5512.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004441&mimeType=html&fmt=ahah

References

  1. Young JM, Kerr A, Sawada H. Agrobacterium. Bergey's Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc., in association with Bergey's Manual Trust; 2015 pp 1–15
    [Google Scholar]
  2. Flores-Félix JD, Menéndez E, Peix A, García-Fraile P, Velázquez E. History and current taxonomic status of genus Agrobacterium . Syst Appl Microbiol 2020; 43:126046 [View Article][PubMed]
    [Google Scholar]
  3. Ramírez-Bahena MH, Peix A, Velázquez E. The Rhizobiaceae bacteria transferring genes to higher plants. In Villa T, Viñas M. (editors) Horizontal Gene Transfer Cham, Switzerland: Springer; 2019 pp 269–289
    [Google Scholar]
  4. Menéndez E, Ramirez-Bahena MH, Peix A, Tejedor C, Mulas R et al. Analysis of cultivable endophytic bacteria in roots of maize in a soil from León province in mainland Spain. In González-Andrés F, James E. (editors) Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction Cham, Switzerland: Springer; 2016 pp 45–53
    [Google Scholar]
  5. Bouzar H, Jones JB. Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumours of Ficus benjamina . Int J Syst Evol Microbiol 2001; 51:1023–1026 [View Article][PubMed]
    [Google Scholar]
  6. Rivas R, García-Fraile P, Mateos PF, Martínez-Molina E, Velázquez E. Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera . Lett Appl Microbiol 2007; 44:181–187 [View Article][PubMed]
    [Google Scholar]
  7. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  8. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTALX windows interface: flexible strategies for multiple sequence alignement aided by quality analysis tools. Nucleic Acids Res 1997; 24:4876–4882
    [Google Scholar]
  9. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  10. Saitou N, Nei M. A neighbour-joining method: a new method for reconstructing phylogenetics trees. Mol Biol Evol 1987; 44:406–425
    [Google Scholar]
  11. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  12. Hameed A, Yeh M-W, Hsieh Y-T, Chung W-C, Lo C-T et al. Diversity and functional characterization of bacterial endophytes dwelling in various rice (Oryza sativa L.) tissues, and their seed-borne dissemination into rhizosphere under gnotobiotic P-stress. Plant Soil 2015; 394:177–197 [View Article]
    [Google Scholar]
  13. Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 2015; 528:364–369 [View Article][PubMed]
    [Google Scholar]
  14. Haque MA, Yun HD, Cho KM. Diversity of indigenous endophytic bacteria associated with the roots of Chinese cabbage (Brassica campestris L.) cultivars and their antagonism towards pathogens. J Microbiol 2016; 54:353–363 [View Article][PubMed]
    [Google Scholar]
  15. Ramírez-Bahena MH, Vial L, Lassalle F, Diel B, Chapulliot D et al. Single acquisition of protelomerase gave rise to speciation of a large and diverse clade within the Agrobacterium/Rhizobium supercluster characterized by the presence of a linear chromid. Mol Phylogenet Evol 2014; 73:202–207 [View Article][PubMed]
    [Google Scholar]
  16. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article][PubMed]
    [Google Scholar]
  17. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  18. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  19. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed]
    [Google Scholar]
  20. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  21. Dunlap CA, Schisler DA, Perry EB, Connor N, Cohan FM et al. Bacillus swezeyi sp. nov. and Bacillus haynesii sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2017; 67:2720–2725 [View Article][PubMed]
    [Google Scholar]
  22. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  23. de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E et al. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852–1863 [View Article][PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  25. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  26. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article][PubMed]
    [Google Scholar]
  27. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  28. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article][PubMed]
    [Google Scholar]
  29. Wildermuth MC, Dewdney J, Wu G, Ausubel FM. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 2001; 414:562–565 [View Article][PubMed]
    [Google Scholar]
  30. Gaille C, Reimmann C, Haas D. Isochorismate synthase (PchA), the first and rate-limiting enzyme in salicylate biosynthesis of Pseudomonas aeruginosa . J Biol Chem 2003; 278:16893–16898 [View Article][PubMed]
    [Google Scholar]
  31. Rekhter D, Lüdke D, Ding Y, Feussner K, Zienkiewicz K et al. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science 2019; 365:498–502 [View Article][PubMed]
    [Google Scholar]
  32. Vincent JM. A Manual for the Practical Study of the Root-Nodule Bacteria IBP Handbook 15 Oxford: Black Well Scientific Publications; 1970
    [Google Scholar]
  33. Anderson AR, Moore LW. Host specificity in the genus Agrobacterium . Phytopathology 1979; 69:320–323 [View Article]
    [Google Scholar]
  34. Lippincott JA, Lippincott BB. Tumour-Initiating ability and nutrition in the genus Agrobacterium . J Gen Microbiol 1969; 59:57–75 [View Article]
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  36. Beringer JE. R factor transfer in Rhizobium leguminosarum . J Gen Microbiol 1974; 84:188–198 [View Article][PubMed]
    [Google Scholar]
  37. Yan J, Li Y, Han XZ, Chen WF, Zou WX et al. Agrobacterium deltaense sp. nov., an endophytic bacteria isolated from nodule of Sesbania cannabina . Arch Microbiol 2017; 199:1003–1009 [View Article][PubMed]
    [Google Scholar]
  38. Yan J, Li Y, Yan H, Chen WF, Zhang X et al. Agrobacterium salinitolerans sp. nov., a saline-alkaline-tolerant bacterium isolated from root nodule of Sesbania cannabina . Int J Syst Evol Microbiol 2017; 67:1906–1911 [View Article][PubMed]
    [Google Scholar]
  39. Marçon Delamuta JK, Scherer AJ, Ribeiro RA, Hungria M. Genetic diversity of Agrobacterium species isolated from nodules of common bean and soybean in Brazil, Mexico, Ecuador and Mozambique, and description of the new species Agrobacterium fabacearum sp. nov. Int J Syst Evol Microbiol
    [Google Scholar]
  40. Salem S, Saidi S, Chihaoui S-A, Mhamdi R. Inoculation of Phaseolus vulgaris, Medicago laciniata and Medicago polymorpha with Agrobacterium sp. strain 10C2 may enhance nodulation and shoot dry weight but does not affect host range specificity. Ann Microbiol 2012; 62:1811–1817 [View Article]
    [Google Scholar]
  41. Chihaoui S-A, Trabelsi D, Jdey A, Mhadhbi H, Mhamdi R. Inoculation of Phaseolus vulgaris with the nodule-endophyte Agrobacterium sp. 10C2 affects richness and structure of rhizosphere bacterial communities and enhances nodulation and growth. Arch Microbiol 2015; 197:805–813 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004441
Loading
/content/journal/ijsem/10.1099/ijsem.0.004441
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error