1887

Abstract

Two novel bacteria, designated HYN0043 and HYN0046, were isolated from a freshwater lake in Korea. 16S rRNA gene sequence phylogeny indicated that strain HYN0043 belongs to the genus of the family because it showed highest sequence similarity to (98.2 %). The average nucleotide identity between strain HYN0043 and was 83.5 %, which is clearly below the suggested threshold for species demarcation. Strain HYN0046 was found to belong to the family and shared highest sequence similarity with (93.8 %). The average amino acid identity values between strain HYN0046 and representative type strains of closely related genera ( and ) were 53.1–60.7 %, implying the novelty of the isolate at the genus level. Phenotypic characteristics (physiological, biochemical and chemotaxonomic) also supported the taxonomic novelty of the two isolates. Thus, we suggest the following names to accommodate strains HYN0043 and HYN0046: sp. nov. (type strain HYN0043=KACC 19184=NBRC 112738) in the family and phylum and gen. nov., sp. nov. (type strain HYN0046=KACC 19178=NBRC 112739) in the family and phylum .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004437
2020-09-04
2020-10-20
Loading full text...

Full text loading...

References

  1. Pankratov TA, Tindall BJ, Liesack W, Dedysh SN. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 2007; 57:2349–2354 [CrossRef][PubMed]
    [Google Scholar]
  2. Urai M, Aizawa T, Nakagawa Y, Nakajima M, Sunairi M. Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int J Syst Evol Microbiol 2008; 58:2046–2050 [CrossRef][PubMed]
    [Google Scholar]
  3. Baik KS, Park SC, Kim EM, Lim CH, Seong CN. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 2010; 60:134–139 [CrossRef][PubMed]
    [Google Scholar]
  4. Zhou Z, Dong Y, Xia X, Wu S, Huang Y et al. Mucilaginibacter terrenus sp. nov., isolated from manganese mine soil. Int J Syst Evol Microbiol 2019; 69:3074–3079 [CrossRef][PubMed]
    [Google Scholar]
  5. Rossau R, Van Landschoot A, Gillis M, De Ley J. Taxonomy of Moraxellaceae fam. nov., a new bacterial family to accommodate the genera Moraxella, Acinetobacter, and Psychrobacter and related organisms. Int J Syst Bacteriol 1991; 41:310–319 [CrossRef]
    [Google Scholar]
  6. Juni E, Bøvre K. Family II. Moraxellaceae Rossau, Van Landschoot, Gillis and De Ley 1991, 317VP. Bergey's Manual of Systematic Bacteriology, 2nd ed Vol. 2 (The Proteobacteria) 2 2007 pp 411–421
    [Google Scholar]
  7. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  8. Jeon Y-S, Lee K, Park S-C, Kim B-S, Cho Y-J et al. EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes. Int J Syst Evol Microbiol 2014; 64:689–691 [CrossRef][PubMed]
    [Google Scholar]
  9. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  10. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [CrossRef][PubMed]
    [Google Scholar]
  11. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  12. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  13. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [CrossRef][PubMed]
    [Google Scholar]
  14. Rodríguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species: culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species. Microbe Magazine 2014111–118
    [Google Scholar]
  15. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes; 2016
  16. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  18. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D et al. Toward an online repository of Standard Operating Procedures (SOPs) for (meta) genomic annotation. OMICS 2008; 12:137–141 [CrossRef][PubMed]
    [Google Scholar]
  19. Shin S-K, Kim E, Choi S, Yi H. Cochleicola gelatinilyticus gen. nov., sp. nov., isolated from a marine gastropod, Reichia luteostoma. J Microbiol Biotechnol 2016; 26:1439–1445 [CrossRef][PubMed]
    [Google Scholar]
  20. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA BT, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society of Microbiology; 2007 pp 330–393
    [Google Scholar]
  21. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:16
    [Google Scholar]
  22. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [CrossRef]
    [Google Scholar]
  23. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  24. Nishimura Y, Ino T, Iizuka H. Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int J Syst Bacteriol 1988; 38:209–211 [CrossRef]
    [Google Scholar]
  25. Liu Y, Rao Q, Tu J, Zhang J, Huang M et al. Acinetobacter piscicola sp. nov., isolated from diseased farmed Murray cod (Maccullochella peelii peelii). Int J Syst Evol Microbiol 2018; 68:905–910 [CrossRef][PubMed]
    [Google Scholar]
  26. Xie C-H, Yokota A. Transfer of the misnamed [Alysiella] sp. IAM 14971 (=ATCC 29468) to the genus Moraxella as Moraxella oblonga sp. nov. Int J Syst Evol Microbiol 2005; 55:331–334 [CrossRef][PubMed]
    [Google Scholar]
  27. Wang H, Zheng T, Hill RT, Hu X. Permianibacter aggregans gen. nov., sp. nov., a bacterium of the family Pseudomonadaceae capable of aggregating potential biofuel-producing microalgae. Int J Syst Evol Microbiol 2014; 64:3503–3507 [CrossRef][PubMed]
    [Google Scholar]
  28. Song J, Choo Y-J, Cho J-C. Perlucidibaca piscinae gen. nov., sp. nov., a freshwater bacterium belonging to the family Moraxellaceae. Int J Syst Evol Microbiol 2008; 58:97–102 [CrossRef][PubMed]
    [Google Scholar]
  29. Kim M-K, Kim T-W, Kim T-S, Joung Y, Han J-H et al. Fluviicoccus keumensis gen. nov., sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2016; 66:201–205 [CrossRef][PubMed]
    [Google Scholar]
  30. Kämpfer P, Jerzak L, Wilharm G, Golke J, Busse H-J et al. Psychrobacter ciconiae sp. nov., isolated from white storks (Ciconia ciconia). Int J Syst Evol Microbiol 2015; 65:772–777 [CrossRef][PubMed]
    [Google Scholar]
  31. França L, Albuquerque L, da Costa MS. Cavicella subterranea gen. nov., sp. nov., isolated from a deep mineral-water aquifer, and emended description of the species Perlucidibaca piscinae. Int J Syst Evol Microbiol 2015; 65:3812–3817 [CrossRef][PubMed]
    [Google Scholar]
  32. Jeon Y, Lee S-S, Chung BS, Kim JM, Bae J-W et al. Mucilaginibacter oryzae sp. nov., isolated from soil of a rice paddy. Int J Syst Evol Microbiol 2009; 59:1451–1454 [CrossRef][PubMed]
    [Google Scholar]
  33. Madhaiyan M, Poonguzhali S, Lee J-S, Senthilkumar M, Lee KC et al. Mucilaginibacter gossypii sp. nov. and Mucilaginibacter gossypiicola sp. nov., plant-growth-promoting bacteria isolated from cotton rhizosphere soils. Int J Syst Evol Microbiol 2010; 60:2451–2457 [CrossRef][PubMed]
    [Google Scholar]
  34. Bogan BW, Sullivan WR, Kayser KJ, Derr KD, Aldrich HC et al. Alkanindiges illinoisensis gen. nov., sp. nov., an obligately hydrocarbonoclastic, aerobic squalane-degrading bacterium isolated from oilfield soils. Int J Syst Evol Microbiol 2003; 53:1389–1395 [CrossRef][PubMed]
    [Google Scholar]
  35. Franzmann PD, Skerman VBD. Agitococcus lubricus gen. nov. sp. nov., a lipolytic, twitching coccus from freshwater. Int J Syst Bacteriol 1981; 31:177–183 [CrossRef]
    [Google Scholar]
  36. Hu Y, Feng Y, Qin J, Radolfova-Krizova L, Maixnerova M et al. Acinetobacter wuhouensis sp. nov., isolated from hospital sewage. Int J Syst Evol Microbiol 2018; 68:3212–3216 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004437
Loading
/content/journal/ijsem/10.1099/ijsem.0.004437
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error