1887

Abstract

In a search for potential causes of increased prolapse incidence in grey short-tailed opossum colonies, samples from the gastrointestinal tracts of 94 clinically normal opossums with rectal prolapses were screened for species by culture and PCR. Forty strains of two novel species which differed from the established taxa were isolated from opossums with and without prolapses. One of the species was spiral-shaped and urease-negative whereas the other strain had fusiform morphology with periplasmic fibres and was urease-positive. 16S rRNA gene sequence analysis revealed that all the isolates had over 99 % sequence identity with each other, and were most closely related to . Strains from the two novel species were subjected to and gene and whole genome sequence analyses. These two novel species formed separate phylogenetic clades, divergent from other known species. The bacteria were confirmed as novel species based on digital DNA–DNA hybridization and average nucleotide identity analysis of their genomes, for which we propose the names sp. nov. with the type strain MIT 15-1451 (=LMG 29780=NCTC 14189) and sp. nov with type strain MIT 17-337 (=LMG 31024=NCTC 14188)

Funding
This study was supported by the:
  • Paul B. Samollow , National Institutes of Health , (Award RR014214)
  • James G Fox , National Institutes of Health , (Award R01-OD011141)
  • James G Fox , National Institutes of Health , (Award P30-ES002109)
  • James G Fox , National Institutes of Health , (Award T32-OD010978)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004424
2020-10-20
2020-11-25
Loading full text...

Full text loading...

References

  1. Samollow PB. Status and applications of genomic resources for the gray, short-tailed opossum, Monodelphis domestica, an American marsupial model for comparative biology. Aust J Zool 2006; 54:173–196 [CrossRef]
    [Google Scholar]
  2. Vandeberg JL. The gray short-tailed opossum (Monodelphis domestica) as a model didelphid species for genetic research. Aust J Zool 1989; 37:235–247 [CrossRef]
    [Google Scholar]
  3. VandeBerg JL. The laboratory opossum. In Poole T, English P. (editors) UFAW handbook on the management of laboratory animals: Terrestrial vertebrates, 7th edition ed. Oxford, U.K: Blackwell Science; 1999 pp 193–209
    [Google Scholar]
  4. VandeBerg JL, Robinson ES. The laboratory opossum (Monodelphis Domestica) in laboratory research. Ilar J 1997; 38:4–12 [CrossRef][PubMed]
    [Google Scholar]
  5. Hubbard GB, Mahaney MC, Gleiser CA, Taylor DE, VandeBerg JL. Spontaneous pathology of the gray short-tailed opossum (Monodelphis domestica). Lab Anim Sci 1997; 47:19–26[PubMed]
    [Google Scholar]
  6. Miller CL, Muthupalani S, Shen Z, Fox JG. Isolation of Helicobacter spp. from mice with rectal prolapses. Comp Med 2014; 64:171–178[PubMed]
    [Google Scholar]
  7. Vandeberg JL, Williams-Blangero S. Chapter 19: The laboratory opossum. The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals, 8th ed. Universities Federation for Animal Welfare; 2010 pp 246–261
    [Google Scholar]
  8. Coldham T, Rose K, O'rourke J, Neilan BA, Dalton H et al. Detection, isolation, and characterization of helicobacter species from the gastrointestinal tract of the brushtail possum. Appl Environ Microbiol 2011; 77:1581–1587 [CrossRef][PubMed]
    [Google Scholar]
  9. Coldham T, Rose K, O’Rourke J, Neilan BA, Dalton H et al. Detection of Helicobacter species in the gastrointestinal tract of ringtail possum and koala: possible influence of diet, on the gut microbiota. Vet Microbiol 2013; 166:429–437 [CrossRef][PubMed]
    [Google Scholar]
  10. Shen Z, Xu S, Dewhirst FE, Paster BJ, Pena JA et al. A novel enterohepatic Helicobacter species 'Helicobacter mastomyrinus' isolated from the liver and intestine of rodents. Helicobacter 2005; 10:59–70 [CrossRef][PubMed]
    [Google Scholar]
  11. Zanoni RG, Piva S, Florio D, Bassi P, Mion D et al. Helicobacter apri sp. nov., isolated from wild boars. Int J Syst Evol Microbiol 2016; 66:2876–2882 [CrossRef][PubMed]
    [Google Scholar]
  12. Collado L, Jara R, González S. Description of Helicobacter valdiviensis sp. nov., an Epsilonproteobacteria isolated from wild bird faecal samples. Int J Syst Evol Microbiol 2014; 64:1913–1919 [CrossRef][PubMed]
    [Google Scholar]
  13. On SLW, Miller WG, Houf K, Fox JG, Vandamme P. Minimal standards for describing new species belonging to the families Campylobacteraceae and Helicobacteraceae: Campylobacter, Arcobacter, Helicobacter and Wolinella spp. Int J Syst Evol Microbiol 2017; 67:5296–5311 [CrossRef][PubMed]
    [Google Scholar]
  14. Fox JG, Dewhirst FE, Shen Z, Feng Y, Taylor NS et al. Hepatic Helicobacter species identified in bile and gallbladder tissue from Chileans with chronic cholecystitis. Gastroenterology 1998; 114:755–763 [CrossRef][PubMed]
    [Google Scholar]
  15. Shen Z, Feng Y, Sheh A, Everitt J, Bertram F et al. Isolation and characterization of a novel Helicobacter species, Helicobacter jaachi sp. nov., from common marmosets (Callithrix jaachus). J Med Microbiol 2015; 64:1063–1073 [CrossRef][PubMed]
    [Google Scholar]
  16. Dewhirst FE, Shen Z, Scimeca MS, Stokes LN, Boumenna T et al. Discordant 16S and 23S rRNA gene phylogenies for the genus Helicobacter: implications for phylogenetic inference and systematics. J Bacteriol 2005; 187:6106–6118 [CrossRef][PubMed]
    [Google Scholar]
  17. Mikkonen TP, Kärenlampi RI, Hänninen ML. Phylogenetic analysis of gastric and enterohepatic Helicobacter species based on partial HSP60 gene sequences. Int J Syst Evol Microbiol 2004; 54:753–758 [CrossRef][PubMed]
    [Google Scholar]
  18. Hannula M, Hänninen ML. Phylogenetic analysis of Helicobacter species based on partial gyrB gene sequences. Int J Syst Evol Microbiol 2007; 57:444–449 [CrossRef][PubMed]
    [Google Scholar]
  19. Inglis GD, McConville M, de Jong A. Atypical Helicobacter canadensis strains associated with swine. Appl Environ Microbiol 2006; 72:4464–4471 [CrossRef][PubMed]
    [Google Scholar]
  20. Feng Y, Mannion A, Madden CM, Swennes AG, Townes C et al. Cytotoxic Escherichia coli strains encoding colibactin and cytotoxic necrotizing factor (CNF) colonize laboratory macaques. Gut Pathog 2017; 9:71 [CrossRef][PubMed]
    [Google Scholar]
  21. Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol 2016; 65:997–1008 [CrossRef][PubMed]
    [Google Scholar]
  22. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [CrossRef][PubMed]
    [Google Scholar]
  23. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [CrossRef]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  25. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015; 16:157 [CrossRef][PubMed]
    [Google Scholar]
  26. Suerbaum S, Josenhans C, Sterzenbach T, Drescher B, Brandt P et al. The complete genome sequence of the carcinogenic bacterium Helicobacter hepaticus. Proc Natl Acad Sci U S A 2003; 100:7901–7906 [CrossRef][PubMed]
    [Google Scholar]
  27. Frank J, Dingemanse C, Schmitz AM, Vossen RH, van Ommen GJ et al. The complete genome sequence of the murine pathobiont Helicobacter typhlonius. Front Microbiol 2015; 6:1549 [CrossRef][PubMed]
    [Google Scholar]
  28. Shen Z, Sheh A, Young SK, Abouelliel A, Ward DV et al. Draft genome sequences of six enterohepatic Helicobacter species isolated from humans and one from rhesus macaques. Genome Announc 2014; 2:e00857-14 [CrossRef][PubMed]
    [Google Scholar]
  29. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35:W182–W185 [CrossRef][PubMed]
    [Google Scholar]
  30. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis-10 years on. Nucleic Acids Res 2016; 44:D694–D697 [CrossRef][PubMed]
    [Google Scholar]
  31. Boutin SR, Shen Z, Rogers AB, Feng Y, Ge Z et al. Different Helicobacter hepaticus strains with variable genomic content induce various degrees of hepatitis. Infect Immun 2005; 73:8449–8452 [CrossRef][PubMed]
    [Google Scholar]
  32. Remfry J. The incidence, pathogenesis and treatment of helminth infections in rhesus monkeys (Macaca mulatta). Lab Anim 1978; 12:213–218 [CrossRef][PubMed]
    [Google Scholar]
  33. Lee SR, Lee YH, Kim KM, Kim SW, Jung KJ et al. Rectal prolapse associated with recurrent diarrhea in a laboratory cynomolgus monkey (Macaca fascicularis). Lab Anim Res 2010; 26:429 [CrossRef]
    [Google Scholar]
  34. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 1990; 98:694–702 [CrossRef][PubMed]
    [Google Scholar]
  35. Foltz CJ, Fox JG, Cahill R, Murphy JC, Yan L et al. Spontaneous inflammatory bowel disease in multiple mutant mouse lines: association with colonization by Helicobacter hepaticus. Helicobacter 1998; 3:69–78 [CrossRef][PubMed]
    [Google Scholar]
  36. Fox JG, Gorelick PL, Kullberg MC, Ge Z, Dewhirst FE et al. A novel urease-negative Helicobacter species associated with colitis and typhlitis in IL-10-deficient mice. Infect Immun 1999; 67:1757–1762 [CrossRef][PubMed]
    [Google Scholar]
  37. Ward JM, Anver MR, Haines DC, Melhorn JM, Gorelick P et al. Inflammatory large bowel disease in immunodeficient mice naturally infected with Helicobacter hepaticus. Lab Anim Sci 1996; 46:15–20[PubMed]
    [Google Scholar]
  38. Miller CL, Muthupalani S, Shen Z, Drees F, Ge Z et al. Lamellipodin-Deficient mice: a model of rectal carcinoma. PLoS One 2016; 11:e0152940 [CrossRef][PubMed]
    [Google Scholar]
  39. Totten PA, Fennell CL, Tenover FC, Wezenberg JM, Perine PL et al. Campylobacter cinaedi (sp. nov.) and Campylobacter fennelliae (sp. nov.): two new Campylobacter species associated with enteric disease in homosexual men. J Infect Dis 1985; 151:131–139 [CrossRef][PubMed]
    [Google Scholar]
  40. Lastovica AJ, le Roux E. Efficient isolation of campylobacteria from stools. J Clin Microbiol 2000; 38:2798–2799[PubMed]
    [Google Scholar]
  41. Shen Z, Feng Y, Rogers AB, Rickman B, Whary MT et al. Cytolethal distending toxin promotes Helicobacter cinaedi-associated typhlocolitis in interleukin-10-deficient mice. Infect Immun 2009; 77:2508–2516 [CrossRef][PubMed]
    [Google Scholar]
  42. Shen Z, Feng Y, Rickman B, Fox JG. Helicobacter cinaedi induced typhlocolitis in Rag-2-deficient mice. Helicobacter 2015; 20:146–155 [CrossRef][PubMed]
    [Google Scholar]
  43. Ruiter-Ligeti J, Vincent S, Czuzoj-Shulman N, Abenhaim HA, Factors R. Risk factors, incidence, and morbidity associated with obstetric Clostridium difficile infection. Obstet Gynecol 2018; 131:387–391 [CrossRef][PubMed]
    [Google Scholar]
  44. Cózar-Llistó A, Ramos-Martinez A, Cobo J. Clostridium difficile Infection in Special High-Risk Populations. Infect Dis Ther 2016; 5:253–269 [CrossRef][PubMed]
    [Google Scholar]
  45. Berger A. Th1 and Th2 responses: what are they?. BMJ 2000; 321:424 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004424
Loading
/content/journal/ijsem/10.1099/ijsem.0.004424
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error