1887

Abstract

Two Gram-stain-positive, facultatively anaerobic, motile, aerobic, rod-shaped and non-spore-forming actinobacteria, strains AO-9 and AO-18, were isolated from paddy soil collected from Daejeon, Republic of Korea. Colonies were smooth, lemon-yellow and circular and 0.5–0.8×2.0–2.4 µm in diameter after 3 days of incubation at 28 °C on tryptic soy agar. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strains AO-9 and AO-18 belonged to the genus , showing the highest sequence similarities to FXJ8.089 (96.6 %), SYSUP0004 (96.5 %), DSM 20111 (96.2 %), DSM 20107 (96.1 %), NEAU-TCZ24 (96.1 %), TR7-06 (96.0 %), JCM 18111 (96.0 %) and less than 96 % to other closely related species. The DNA–DNA hybridization values between strains AO-9 and AO-18 were 87 %. The average nucleotide identity and digital DNA–DNA hybridization values between strain AO-9 and type strains of related species of the genus were 84.0–85.8 % and 20.3–20.9 %, respectively. The major cellular fatty acids are anteiso-C (49.9 %), C (12.9 %) and iso-C (12.1 %). The predominant isoprenoid quinone was MK-9 (H). The polar lipid profile consists of diphosphatidylglycerol, phosphatidylglycerol and one unidentified lipid. The DNA G+C content was 72.9 mol%. Based on its distinctive phenotypic, phylogenetic and chemotaxonomic characteristics, the two strains are considered to represent novel species of the genus , for which the name sp. nov. is proposed. The type strain is AO-9 (=KACC 19069=NBRC 112523).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004409
2020-09-02
2020-09-28
Loading full text...

Full text loading...

References

  1. Stackebrandt E, Keddie RM. Genus Cellulomonas. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology 2 Baltimore: Williams & Wilkins; 1986 pp 1325–1329
    [Google Scholar]
  2. Hartmann A, Baldani JI. The genus Azospirillum. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. (editors) The Prokaryotes, V. 5: Proteobacteria Alpha and Beta Subclasses New York, USA: Springer Verlag; 2006 pp 115–140
    [Google Scholar]
  3. Cáceres EA, Rodriguez-Caceres EA. Improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 1982; 44:990–991 [CrossRef][PubMed]
    [Google Scholar]
  4. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [CrossRef]
    [Google Scholar]
  5. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology 4 Baltimore, MD: Williams & Wilkins; 1989 pp 2452–2492
    [Google Scholar]
  6. Jacobson E, Grauville WC, Fogs CE. Color Harmony Manual, 4th ed. Chicago: Container Corporation of America; 1958
    [Google Scholar]
  7. Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  8. Zhang J, Gu T, Zhou Y, He J, Zheng L-Q et al. Terrimonas rubra sp. nov., isolated from a polluted farmland soil and emended description of the genus Terrimonas. Int J Syst Evol Microbiol 2012; 62:2593–2597 [CrossRef][PubMed]
    [Google Scholar]
  9. Conn HJ, Breed RS. The use of the nitrate-reduction test in characterizing bacteria. J Bacteriol 1919; 4:267–290 [CrossRef][PubMed]
    [Google Scholar]
  10. Kamlage B. Methods for general and molecular bacteriology. Mol Nutr Food Res 1996; 40:103
    [Google Scholar]
  11. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Manual of Method for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  12. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [CrossRef]
    [Google Scholar]
  13. Lee H-J, Han S-I, Whang K-S. Streptomyces gramineus sp. nov., an antibiotic-producing actinobacterium isolated from bamboo (Sasa borealis) rhizosphere soil. Int J Syst Evol Microbiol 2012; 62:856–859 [CrossRef][PubMed]
    [Google Scholar]
  14. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  15. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  23. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  24. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [CrossRef]
    [Google Scholar]
  25. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [CrossRef][PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef]
    [Google Scholar]
  27. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [CrossRef][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  29. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [CrossRef]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  31. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [CrossRef]
    [Google Scholar]
  34. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy Fairfax: VA: Society for Industrial Microbiology; 1980 pp 227–291
    [Google Scholar]
  35. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [CrossRef][PubMed]
    [Google Scholar]
  36. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  37. Collins MD. Isoprenoid quinone analysis in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 267–287
    [Google Scholar]
  38. Zhang L, Xi L, Qiu D, Song L, Dai X et al. Cellulomonas marina sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 2013; 63:3014–3018 [CrossRef][PubMed]
    [Google Scholar]
  39. Li Y-Q, Zhang H, Xiao M, Dong Z-Y, Zhang J-Y et al. Cellulomonas endophytica sp. nov., isolated from Gastrodia elata Blume. Int J Syst Evol Microbiol 2020; 70:3091–3095 [CrossRef][PubMed]
    [Google Scholar]
  40. Lee C-M, Weon H-Y, Hong S-B, Jeon Y-A, Schumann P et al. Cellulomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008; 58:2925–2929 [CrossRef][PubMed]
    [Google Scholar]
  41. Shi Z, Luo G, Wang G. Cellulomonas carbonis sp. nov., isolated from coal mine soilInt. J. Syst. Evol. Microbiol 2020; 70:631–635
    [Google Scholar]
  42. Tian Y, Han C, Hu J, Zhao J, Zhang C et al. Cellulomonas rhizosphaerae sp. nov., a novel actinomycete isolated from soil. Int J Syst Evol Microbiol 2019; 69:1001–1008 [CrossRef][PubMed]
    [Google Scholar]
  43. Kang M-S, Im W-T, Jung H-M, Kim MK, Goodfellow M et al. Cellulomonas composti sp. nov., a cellulolytic bacterium isolated from cattle farm compost. Int J Syst Evol Microbiol 2007; 57:1256–1260 [CrossRef][PubMed]
    [Google Scholar]
  44. Yoon M-H, Ten LN, Im W-T, Lee S-T. Cellulomonas chitinilytica sp. nov., a chitinolytic bacterium isolated from cattle-farm compost. Int J Syst Evol Microbiol 2008; 58:1878–1884 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004409
Loading
/content/journal/ijsem/10.1099/ijsem.0.004409
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error