1887

Abstract

Strain SDU3-2 was isolated from a soil sample collected in Shandong Province, PR China. Cells of SDU3-2 were spherical, Gram-stain-positive, aerobic and non-motile. Cellular growth of the strain occurred at 25–45 °C, pH 5.5–8.5 and with 0–1.5 % (w/v) of NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain SDU3-2 was closest to the type strain ALT-1b with a similarity of 95.2 %. The draft genome was 3.49 Mbp long with 69.2 mol% G+C content. Strain SDU3-2 exhibited high resistance to gamma radiation (D >12 kGy) and UV (D >900 J m). The strain encoded many genes for resistance to radiation and oxidative stress, which were highly conserved with other species, but possessed interspecific properties. The major fatty acids of SDU3-2 cells were C 6, C 7/C 6, and C 8, the major menaquinone was menaquinone-8, and the major polar lipids were an unidentified phosphoglycolipid, four unidentified glycolipids and an unidentified phospholipid. The average nucleotide identity and DNA–DNA hybridization results further indicated that strain SDU3-2 represents a new species in the genus , for which the name sp. nov. is proposed. The type strain is SDU3-2 (=CGMCC 1.17147=KCTC 43098).

Funding
This study was supported by the:
  • Natural Science Foundation of Shandong Province (Award No. ZR2016QZ002)
    • Principle Award Recipient: Yue-zhong Li
  • Ministry of Science and Technology of the People's Republic of China (Award No. 2019FY100700)
    • Principle Award Recipient: Duo-hong Sheng
  • Ministry of Science and Technology of the People's Republic of China (Award No. 2017FY100302,No. 2018YFA0900400,No. 2018YFA0901704)
    • Principle Award Recipient: Yue-zhong Li
  • National Natural Science Foundation of China (Award Nos. 31670076 and 31471183)
    • Principle Award Recipient: Yue-zhong Li
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004369
2020-08-10
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/9/4993.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004369&mimeType=html&fmt=ahah

References

  1. Brooks BW, Murray RGE. Nomenclature for "Micrococcus radiodurans" and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 1981; 31:353–360 [View Article]
    [Google Scholar]
  2. Parte AC. LPSN - List of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  3. Lim S, Jung J-H, Blanchard L, de Groot A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev 2019; 43:19–52 [View Article][PubMed]
    [Google Scholar]
  4. Wang X-P, Li C-M, Yu Y, Li H-R, Du Z-J et al. Deinococcus arcticus sp. nov., isolated from Silene acaulis rhizosphere soil of the Arctic tundra. Int J Syst Evol Microbiol 2019; 69:3437–3442 [View Article][PubMed]
    [Google Scholar]
  5. Makk J, Tóth EM, Anda D, Pál S, Schumann P et al. Deinococcus budaensis sp. nov., a mesophilic species isolated from a biofilm sample of a hydrothermal spring cave. Int J Syst Evol Microbiol 2016; 66:5345–5351 [View Article][PubMed]
    [Google Scholar]
  6. Battista JR. Against all odds: the survival strategies of Deinococcus radiodurans . Annu Rev Microbiol 1997; 51:203–224 [View Article][PubMed]
    [Google Scholar]
  7. Dong XZ, Cai MY. Chapter 14. Determination of biochemical characteristics. Manual for the Systematic Identification of General Bacteria Beijing: Science Press (in Chinese); 2001 pp 370–398
    [Google Scholar]
  8. Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R et al. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 1997; 47:939–947 [View Article][PubMed]
    [Google Scholar]
  9. Vaishampayan P, Roberts AH, Augustus A, Pukall R, Schumann P et al. Deinococcus phoenicis sp. nov., an extreme ionizing-radiation-resistant bacterium isolated from the Phoenix Lander assembly facility. Int J Syst Evol Microbiol 2014; 64:3441–3446 [View Article][PubMed]
    [Google Scholar]
  10. Driedger AA. The ordered growth pattern of microcolonies of Micrococcus radiodurans: first generation sectoring of induced lethal mutations. Can J Microbiol 1970; 16:1133–1135 [View Article][PubMed]
    [Google Scholar]
  11. Slade D, Radman M. Oxidative stress resistance in Deinococcus radiodurans. Microbiology and Molecular Biology Reviews 2011; 75:133–191 [View Article]
    [Google Scholar]
  12. Gerber E, Bernard R, Castang S, Chabot N, Coze F et al. Deinococcus as new chassis for industrial biotechnology: biology, physiology and tools. J Appl Microbiol 2015; 119:1–10 [View Article][PubMed]
    [Google Scholar]
  13. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  14. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  16. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  18. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article][PubMed]
    [Google Scholar]
  19. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  20. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  21. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  23. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  24. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  25. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp 309–329
    [Google Scholar]
  26. Yan L, Wang J, Chen Z, Guan Y, Li J. Microbacterium nanhaiense sp. nov., an actinobacterium isolated from sea sediment. Int J Syst Evol Microbiol 2015; 65:3697–3702 [View Article][PubMed]
    [Google Scholar]
  27. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  28. da Costa MS, Albuquerque L, Nobre MF, Wait R. The extraction and identification of respiratory lipoquinones of prokaryotes and their use in taxonomy. In Rainey FA, Oren A. (editors) Methods in Microbiology (Taxonomy of Prokaryotex) London: Elsevier Ltd; 2011 pp 197–206
    [Google Scholar]
  29. Wang N-N, Liu Z-Y, Jiang L-X, Li Y-X, Du Z-J et al. Roseovarius salinarum sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2018; 68:1986–1991 [View Article][PubMed]
    [Google Scholar]
  30. da Costa MS, Albuquerque L, Nobre MF, Wait R. The identification of fatty acids in bacteria. In Rainey FA, Oren A. (editors) Methods in Microbiology (Taxonomy of Prokaryotes 38 London: Elsevier Ltd; 2011 pp 183–196
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  32. Moya G, Yan Z-F, Chu D-H, Won K, Yang J-E et al. Deinococcus hibisci sp. nov., isolated from rhizosphere of Hibiscus syriacus L. (mugunghwa flower). Int J Syst Evol Microbiol 2018; 68:28–34 [View Article][PubMed]
    [Google Scholar]
  33. Kim EB, Kang MS, Joo ES, Jeon SH, Jeong SW et al. Deinococcus ruber sp. nov., a radiation-resistant bacterium isolated from soil. Int J Syst Evol Microbiol 2017; 67:72–76 [View Article][PubMed]
    [Google Scholar]
  34. Sheng D-H, Wang Y-X, Qiu M, Zhao J-Y, Yue X-J et al. Functional division between the RecA1 and RecA2 proteins in Myxococcus xanthus . Front Microbiol 2020; 11:140 [View Article][PubMed]
    [Google Scholar]
  35. Hussain F, Khan IU, Habib N, Xian W-D, Hozzein WN et al. Deinococcus saudiensis sp. nov., isolated from desert. Int J Syst Evol Microbiol 2016; 66:5106–5111 [View Article][PubMed]
    [Google Scholar]
  36. Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF et al. Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 2005; 71:5225–5235 [View Article][PubMed]
    [Google Scholar]
  37. Servant P, Jolivet E, Bentchikou E, Mennecier S, Bailone A et al. The ClpPX protease is required for radioresistance and regulates cell division after gamma-irradiation in Deinococcus radiodurans . Mol Microbiol 2007; 66:1231–1239 [View Article][PubMed]
    [Google Scholar]
  38. Slade D, Radman M. Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 2011; 75:133–191 [View Article][PubMed]
    [Google Scholar]
  39. Zhou Z, Zhang W, Su S, Chen M, Lu W et al. CYP287A1 is a carotenoid 2-β-hydroxylase required for deinoxanthin biosynthesis in Deinococcus radiodurans R1. Appl Microbiol Biotechnol 2015; 99:10539–10546 [View Article][PubMed]
    [Google Scholar]
  40. da Costa Morato Nery D, da Silva CG, Mariani D, Fernandes PN, Pereira MD et al. The role of trehalose and its transporter in protection against reactive oxygen species. Biochim Biophys Acta 2008; 1780:1408–1411 [View Article][PubMed]
    [Google Scholar]
  41. Jin M, Xiao A, Zhu L, Zhang Z, Huang H et al. The diversity and commonalities of the radiation-resistance mechanisms of Deinococcus and its up-to-date applications. AMB Express 2019; 9:138 [View Article]
    [Google Scholar]
  42. Panek A, Pietrow O, Filipkowski P, Synowiecki J. Effects of the polyhistidine tag on kinetics and other properties of trehalose synthase from Deinococcus geothermalis . Acta Biochim Pol 2013; 60:163–166 [View Article][PubMed]
    [Google Scholar]
  43. Filipkowski P, Pietrow O, Panek A, Synowiecki J. Properties of recombinant trehalose synthase from Deinococcus radiodurans expressed in Escherichia coli . Acta Biochim Pol 2012; 59:425–431 [View Article][PubMed]
    [Google Scholar]
  44. Xu R, Wu K, Han H, Ling Z, Chen Z et al. Co-expression of YieF and PhoN in Deinococcus radiodurans R1 improves uranium bioprecipitation by reducing chromium interference. Chemosphere 2018; 211:1156–1165 [View Article][PubMed]
    [Google Scholar]
  45. Gogada R, Singh SS, Lunavat SK, Pamarthi MM, Rodrigue A et al. Engineered Deinococcus radiodurans R1 with NiCoT genes for bioremoval of trace cobalt from spent decontamination solutions of nuclear power reactors. Appl Microbiol Biotechnol 2015; 99:9203–9213 [View Article][PubMed]
    [Google Scholar]
  46. Misra CS, Appukuttan D, Kantamreddi VSS, Rao AS, Apte SK. Recombinant D. radiodurans cells for bioremediation of heavy metals from acidic/neutral aqueous wastes. Bioeng Bugs 2012; 3:44–48 [View Article][PubMed]
    [Google Scholar]
  47. Kim D-U, Lee H, Lee J-H, Ahn J-H, Lim S et al. Deinococcus metallilatus sp. nov. and Deinococcus carri sp. nov., isolated from a car air-conditioning system. Int J Syst Evol Microbiol 2015; 65:3175–3182 [View Article][PubMed]
    [Google Scholar]
  48. Zhang Y-Q, Sun C-H, Li W-J, Yu L-Y, Zhou J-Q et al. Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China. Int J Syst Evol Microbiol 2007; 57:370–375 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004369
Loading
/content/journal/ijsem/10.1099/ijsem.0.004369
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error