1887

Abstract

A novel anaerobic, endospore-forming bacterium (strain M08 DMB) was isolated from a terrestrial mud volcano (Taman Peninsula, Russia). Cells of the strain were motile rods 1.3–2.0 µm long and 0.4 µm in diameter. The temperature range for growth was 5–42 °C, with an optimum at 30 °C. The pH range for growth was H 6.5–11.0, with an optimum at pH 8.0. Growth of strain M08 DMB was observed at NaCl concentrations of 0–5.0 % (w/v) with an optimum at 1.0 %. Strain M08 DMB utilized 3,4-dimethoxybenzoic acid, 2-methoxyphenol, carbon monoxide, glucose, fructose, mannose, xylose and yeast extract. The end product of glucose fermentation was acetate. The DNA G+C content of strain M08 DMB was 32.3 mol% (obtained via whole genome sequencing). The closest phylogenetic relative of strain M08 DMB was (family , class ) with 95.17 % 16S rRNA gene sequence similarity. Based on the phenotypic, genotypic and phylogenetic characteristics of the isolate, strain M08 DMB is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain of is M08 DMB (=KCTC 15840=VKM B-3387).

Funding
This study was supported by the:
  • State Assignment in scientific activities at the Gubkin University. (Award FSZE-2020-0007)
    • Principle Award Recipient: D.A. Petrova
  • Ministry of Science and Higher Education of the Russian Federation
    • Principle Award Recipient: A.Y. Merkel
  • Russian Science Foundation (Award 17-74-30025)
    • Principle Award Recipient: E.A. Bonch-Osmolovskaya
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004361
2020-08-03
2021-08-02
Loading full text...

Full text loading...

References

  1. Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA. Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Front Bioeng Biotechnol 2015; 3:3–75 [View Article]
    [Google Scholar]
  2. Allen TD, Caldwell ME, Lawson PA, Huhnke RL, Tanner RS. Alkalibaculum bacchi gen. nov., sp. nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil. Int J Syst Evol Microbiol 2010; 60:2483–2489 [View Article][PubMed]
    [Google Scholar]
  3. Slobodkin AI, Reysenbach A-L, Slobodkina GB, Baslerov RV, Kostrikina NA et al. Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2012; 62:2565–2571 [View Article][PubMed]
    [Google Scholar]
  4. Wolin EA, Wolin MJ, Wolfe RS. Formation of methane by bacterial extracts. J Biol Chem 1963; 238:2882–2886[PubMed]
    [Google Scholar]
  5. Slobodkina GB, Baslerov RV, Novikov AA, Viryasov MB, Bonch-Osmolovskaya EA et al. Inmirania thermothiophila gen. nov., sp. nov., a thermophilic, facultatively autotrophic, sulfur-oxidizing gammaproteobacterium isolated from a shallow-sea hydrothermal vent. Int J Syst Evol Microbiol 2016; 66:701–706 [View Article][PubMed]
    [Google Scholar]
  6. Steel KJ. The oxidase reaction as a taxonomic tool. J Gen Microbiol 1961; 25:297–306 [View Article]
    [Google Scholar]
  7. Clarke PH, Cowan ST. Biochemical methods for bacteriology. J Gen Microbiol 1952; 6:187–197 [View Article][PubMed]
    [Google Scholar]
  8. Gram HC. Über die isolierte Färbung Der Schizomyceten in Schnitt- und Trockenpräparaten. Fortschritte der Medizin 1884; 2:185–189
    [Google Scholar]
  9. Beverige TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Reddy CA, Beverige TJ, Breznak JA, Marzluf GA, Scmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007 pp 19–33
    [Google Scholar]
  10. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beverige TJ, Breznak JA, Marzluf GA, Scmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007 pp 330–393
    [Google Scholar]
  11. Härtig C. Rapid identification of fatty acid methyl esters using a multidimensional gas chromatography-mass spectrometry database. J Chromatogr A 2008; 1177:159–169 [View Article][PubMed]
    [Google Scholar]
  12. Frolov EN, Kublanov IV, Toshchakov SV, Samarov NI, Novikov AA et al. Thermodesulfobium acidiphilum sp. nov., a thermoacidophilic, sulfate-reducing, chemoautotrophic bacterium from a thermal site. Int J Syst Evol Microbiol 2017; 67:1482–1485 [View Article][PubMed]
    [Google Scholar]
  13. Collins MD. Analysis of isoprenoid quinones. Methods Microbiol 1985; 18:329–363
    [Google Scholar]
  14. Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BFF et al. Genbank. Nucleic Acids Res 1999; 27:12–17 [View Article]
    [Google Scholar]
  15. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  16. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  17. Nakamura T, Yamada KD, Tomii K, Katoh K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 2018; 34:2490–2492 [View Article][PubMed]
    [Google Scholar]
  18. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article][PubMed]
    [Google Scholar]
  19. Lefort V, Longueville J-E, Gascuel O. Sms: smart model selection in PhyML. Mol Biol Evol 2017; 34:2422–2424 [View Article][PubMed]
    [Google Scholar]
  20. Anisimova M, Gil M, Dufayard J-F, Dessimoz C, Gascuel O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol 2011; 60:685–699 [View Article][PubMed]
    [Google Scholar]
  21. Hordijk W, Gascuel O. Improving the efficiency of SPR moves in phylogenetic tree search methods based on maximum likelihood. Bioinformatics 2005; 21:4338–4347 [View Article][PubMed]
    [Google Scholar]
  22. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [View Article][PubMed]
    [Google Scholar]
  23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  24. Ludwig W, Schleifer K-H, Whitman WB. Revised road map to the phylum Firmicutes . Syst Bacteriol 20101–13
    [Google Scholar]
  25. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article][PubMed]
    [Google Scholar]
  26. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article][PubMed]
    [Google Scholar]
  27. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article][PubMed]
    [Google Scholar]
  28. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008; 25:1307–1320 [View Article][PubMed]
    [Google Scholar]
  29. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article][PubMed]
    [Google Scholar]
  30. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article][PubMed]
    [Google Scholar]
  31. Schilhabel A, Studenik S, Vödisch M, Kreher S, Schlott B et al. The ether-cleaving methyltransferase system of the strict anaerobe Acetobacterium dehalogenans: analysis and expression of the encoding genes. J Bacteriol 2009; 191:588–599 [View Article][PubMed]
    [Google Scholar]
  32. Studenik S, Vogel M, Diekert G. Characterization of an O-demethylase of Desulfitobacterium hafniense DCB-2. J Bacteriol 2012; 194:3317–3326 [View Article][PubMed]
    [Google Scholar]
  33. Engelmann T, Kaufmann F, Diekert G. Isolation and characterization of a veratrol:corrinoid protein methyl transferase from Acetobacterium dehalogenans . Arch Microbiol 2001; 175:376–383 [View Article][PubMed]
    [Google Scholar]
  34. Stackebrandt E. The family Eubacteriaceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes Berlin, Heidelberg: Springer; 2014 pp 107–108
    [Google Scholar]
  35. Liu L, Jiao J-Y, Salam N, Zhou E-M, Fang B-Z et al. Rhabdanaerobium thermarum gen. nov., sp. nov., a novel anaerobic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 2017; 67:4584–4588 [View Article][PubMed]
    [Google Scholar]
  36. Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP et al. The mouse intestinal bacterial collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 2016; 1:16131 [View Article][PubMed]
    [Google Scholar]
  37. Ueki A, Shibuya T, Kaku N, Ueki K. Aminocella lysinolytica gen. nov., sp. nov., a L-lysine-degrading, strictly anaerobic bacterium in the class Clostridia isolated from a methanogenic reactor of cattle farms. Arch Microbiol 2015; 197:97–104 [View Article][PubMed]
    [Google Scholar]
  38. Mazzini A, Etiope G. Mud volcanism: an updated review. Earth-Science Reviews 2017; 168:81–112 [View Article]
    [Google Scholar]
  39. Hedberg ME, Moore ERB, Svensson-Stadler L, Hörstedt P, Baranov V et al. Lachnoanaerobaculum gen. nov., a new genus in the LachnospiriaceaeLachnospiraceae: characterization of Lachnoanaerobaculum umeaense gen. nov., sp. nov., isolated from the human small intestine, and Lachnoanaerobaculum orale sp. nov., isolated from saliva, and reclassification of Eubacterium saburreum (Prevot 1966) Holdeman and Moore 1970 as Lachnoanaerobaculum saburreum comb. nov. Int J Syst Evol Microbiol 2012; 62:2685–2690 [View Article][PubMed]
    [Google Scholar]
  40. Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI et al. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 2012; 14:2870–2890 [View Article][PubMed]
    [Google Scholar]
  41. Wunderlin T, Junier T, Roussel-Delif L, Jeanneret N, Junier P. Stage 0 sporulation gene A as a molecular marker to study diversity of endospore-forming Firmicutes . Environ Microbiol Rep 2013; 5:911–924 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004361
Loading
/content/journal/ijsem/10.1099/ijsem.0.004361
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error