1887

Abstract

A novel bacterium, designated strain KXZD1103, was isolated from sediment collected at a cold seep field of the Formosa Ridge in the South China Sea. Cells were Gram-stain-negative, facultatively anaerobic, motile, oxidase- and catalase-positive, and grew optimally at 28 °C, pH 6.0–pH 7.0 and in the presence of 1–3 % (w/v) NaCl. The major cellular fatty acids were summed feature 8 (C ω7/C ω6), summed feature 3 (C ω7/C ω6) and C. The major respiratory ubiquinone was Q-8. The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Analysis of 16S rRNA gene sequences revealed that strain KXZD1103 grouped with members of the genus , with 4CA (98.1 % sequence similarity) and R4-8 (97.7 %) as its closest neighbours. Genome sequencing revealed a genome size of 4.17 Mb and a DNA G+C content of 50.1 %. Genomic average nucleotide identity values for strain KXZD1103 with the type strains within the genus ranged from 71.0 to 75.7 %, while the DNA–DNA hybridization values for strain KXZD1103 with these strains ranged from 16.1 to 21.6 %. On the basis of the results of phylogenetic, phenotypic and chemotaxonomic analyses, strain KXZD1103 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is KXZD1103 (=KCTC 72678=MCCC 1K04283).

Funding
This study was supported by the:
  • Huan Zhang , Senior User Project of RV KEXUE , (Award KEXUE2019G06)
  • Chaolun Li , Open Research Project of National Major Science & Technology Infrastructure (RV KEXUE) , (Award NMSTI-KEXUE2017K01)
  • Huan Zhang , National Key R&D Program of China , (Award 2018YFC0310800)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004352
2020-07-31
2020-08-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/10.1099/ijsem.0.004352/ijsem004352.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004352&mimeType=html&fmt=ahah

References

  1. Dimitriu PA, Shukla SK, Conradt J, Márquez MC, Ventosa A et al. Nitrincola lacisaponensis gen. nov., sp. nov., a novel alkaliphilic bacterium isolated from an alkaline, saline lake. Int J Syst Evol Microbiol 2005; 55:2273–2278 [CrossRef][PubMed]
    [Google Scholar]
  2. Borsodi AK, Korponai K, Schumann P, Spröer C, Felföldi T et al. Nitrincola alkalilacustris sp. nov. and Nitrincola schmidtii sp. nov., alkaliphilic bacteria isolated from soda pans, and emended description of the genus Nitrincola. Int J Syst Evol Microbiol 2017; 67:5159–5164 [CrossRef][PubMed]
    [Google Scholar]
  3. Joshi A, Thite S, Kulkarni G, Dhotre D, Joseph N et al. Nitrincola alkalisediminis sp. nov., an alkaliphilic bacterium isolated from an alkaline lake. Int J Syst Evol Microbiol 2016; 66:1254–1259 [CrossRef][PubMed]
    [Google Scholar]
  4. Joshi A, Thite S, Dhotre D, Moorthy M, Joseph N et al. Nitrincola tapanii sp. nov., a novel alkaliphilic bacterium from An Indian Soda Lake. Int J Syst Evol Microbiol 2020; 70:1106–1111 [CrossRef][PubMed]
    [Google Scholar]
  5. Phurbu D, Pema Y, Ma C, Lu H, Li H et al. Nitrincola tibetensis sp. nov., isolated from Lake XuguoCo on the Tibetan Plateau. Int J Syst Evol Microbiol 2019; 69:123–128 [CrossRef][PubMed]
    [Google Scholar]
  6. Mwirichia R, Muigai AW, Tindall B, Boga HI, Stackebrandt E. Isolation and characterisation of bacteria from the haloalkaline lake Elmenteita, Kenya. Extremophiles 2010; 14:339–348 [CrossRef][PubMed]
    [Google Scholar]
  7. Antony CP, Kumaresan D, Hunger S, Drake HL, Murrell JC et al. Microbiology of Lonar lake and other soda lakes. ISME J 2013; 7:1252 [CrossRef][PubMed]
    [Google Scholar]
  8. Borsodi AK, Knáb M, Czeibert K, Márialigeti K, Vörös L et al. Planktonic bacterial community composition of an extremely shallow soda pond during a phytoplankton Bloom revealed by cultivation and molecular cloning. Extremophiles 2013; 17:575–584 [CrossRef][PubMed]
    [Google Scholar]
  9. Singh A, Vaidya B, Tanuku NRS, Pinnaka AK. Nitrincola nitratireducens sp. nov. isolated from a haloalkaline crater lake. Syst Appl Microbiol 2015; 38:555–562 [CrossRef][PubMed]
    [Google Scholar]
  10. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  12. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  13. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  15. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [CrossRef][PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  18. Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 2018; 46:2159–2168 [CrossRef][PubMed]
    [Google Scholar]
  19. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [CrossRef][PubMed]
    [Google Scholar]
  20. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [CrossRef]
    [Google Scholar]
  21. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [CrossRef][PubMed]
    [Google Scholar]
  22. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [CrossRef][PubMed]
    [Google Scholar]
  23. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  24. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. Gene ontology: tool for the unification of biology. the gene ontology Consortium. Nat Genet 2000; 25:25–29 [CrossRef][PubMed]
    [Google Scholar]
  25. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006; 34:D354–D357 [CrossRef][PubMed]
    [Google Scholar]
  26. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res 2004; 32:277D–280 [CrossRef][PubMed]
    [Google Scholar]
  27. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015; 43:D261–D269 [CrossRef][PubMed]
    [Google Scholar]
  28. Li W, Jaroszewski L, Godzik A. Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics 2002; 18:77–82 [CrossRef][PubMed]
    [Google Scholar]
  29. Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 2000; 28:45–48 [CrossRef][PubMed]
    [Google Scholar]
  30. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  33. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  34. Zhang X. Marine Microbiology, 2 ed. Beijing: Science Press; 2016
    [Google Scholar]
  35. Sun Q-L, Sun L. Description of Algoriphagus iocasae sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2017; 67:243–249 [CrossRef][PubMed]
    [Google Scholar]
  36. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  37. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News Lett 1990; 20:1–6
    [Google Scholar]
  38. Kates M. Techniques of Lipidology, 2nd ed. Amsterdam: Elsevier.; 1986
    [Google Scholar]
  39. Lai Q, Liu X, Yuan J, Xie S, Shao Z. Pararhodobacter marinus sp. nov., isolated from deep-sea water of the Indian Ocean. Int J Syst Evol Microbiol 2019; 69:932–936 [CrossRef][PubMed]
    [Google Scholar]
  40. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [CrossRef]
    [Google Scholar]
  41. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004352
Loading
/content/journal/ijsem/10.1099/ijsem.0.004352
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error