1887

Abstract

Five yeast strains were isolated from soil and sediments collected from Alps and Apennines glaciers during sampling campaigns carried out in summer 2007 and 2017, respectively. Based on morphological and physiological tests and on phylogenetic analyses reconstructed with ITS and D1/D2 sequences, the five strains were considered to belong to two related but hitherto unknown species within the genus , in an intermediate position between and . The names (holotype DBVPG 10734) and (holotype DBVPG 10736) are proposed for the two novel species and a detailed description of their morphological, physiological and phylogenetic features are presented. Both species fermented glucose, sucrose and trehalose, which is an uncommon feature in basidiomycetous yeasts, and showed septate hyphae with teliospore formation.

Funding
This study was supported by the:
  • Silvano Onofri , Ministero dell’Istruzione, dell’Università e della Ricerca
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004336
2020-07-22
2020-10-30
Loading full text...

Full text loading...

References

  1. Di Menna ME. Three new yeasts from Antarctic soils: Candida nivalis, Candida gelida and Candida FRIGIDA spp.n. Antonie van Leeuwenhoek 1966; 32:25–28 [CrossRef][PubMed]
    [Google Scholar]
  2. Fell JW, Statzell AC, Hunter IL, Phaff HJ. Leucosporidium gen. nov., the heterobasidiomycetous stage of several yeasts of the genus Candida. Antonie van Leeuwenhoek 1969; 35:433–462 [CrossRef][PubMed]
    [Google Scholar]
  3. Sugiyama J, Fukagawa M, CHIU SIU-WAI, Komagata K. Cellular carbohydrate composition, DNA base composition, ubiquinone systems, and diazonium blue B color test in the genera Rhodosporidium, Leucosporidium, Rhodotorula and related basidiomycetous yeasts. J Gen Appl Microbiol 1985; 31:519–550 [CrossRef]
    [Google Scholar]
  4. Yamada Y, Komagata K. Mrakia gen. nov., a heterobasidiomycetous yeast genus for the Q8-equipped, self-sporulating organisms which produce a unicellular metabasidium, formerly classified in the genus Leucosporidium . J Gen Appl Microbiol 1987; 33:455–457 [CrossRef]
    [Google Scholar]
  5. Xin M-xiu, Zhou P-jin, Xin M, Zhou P. Mrakia psychrophila sp. nov., a new species isolated from Antarctic soil. J Zhejiang Univ Sci B 2007; 8:260–265 [CrossRef][PubMed]
    [Google Scholar]
  6. Margesin R, Fell JW. Mrakiella cryoconiti gen. nov., sp. nov., a psychrophilic, anamorphic, basidiomycetous yeast from alpine and arctic habitats. Int J Syst Evol Microbiol 2008; 58:2977–2982 [CrossRef][PubMed]
    [Google Scholar]
  7. Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T et al. Cold-adapted yeasts from Antarctica and the Italian alps-description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 2010; 14:47–59 [CrossRef][PubMed]
    [Google Scholar]
  8. Tsuji M, Tanabe Y, Vincent WF, Uchida M. Mrakia arctica sp. nov., a new psychrophilic yeast isolated from an ice island in the Canadian High Arctic. Mycoscience 2018; 59:54–58 [CrossRef]
    [Google Scholar]
  9. Tsuji M, Tanabe Y, Vincent WF, Uchida M. Mrakia hoshinonis sp. nov., a novel psychrophilic yeast isolated from a retreating glacier on Ellesmere Island in the Canadian High Arctic. Int J Syst Evol Microbiol 2019; 69:944–948 [CrossRef][PubMed]
    [Google Scholar]
  10. Yurkov AM, Sannino C, Turchetti B. Mrakia fibulata sp. nov., a psychrotolerant yeast from temperate and cold habitats. Antonie van Leeuwenhoek 2020; 113:499–510 [CrossRef][PubMed]
    [Google Scholar]
  11. Branda E, Turchetti B, Diolaiuti G, Pecci M, Smiraglia C et al. Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone glacier, Apennines, Italy). FEMS Microbiol Ecol 2010; 72:354–369 [CrossRef][PubMed]
    [Google Scholar]
  12. Kurtzman CP, Fell JW, Boekhout T, Robert V. Methods for isolation, phenotypic characterization and maintenance of yeasts. In Kurtzman CP, Fell JW, Boekhout T. (editors) The Yeast, a Taxonomic Study, 5th ed. Elsevier: Amsterdam; 2011 pp 87–110
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  14. Tsuji M, Kudoh S, Tanabe Y, Hoshino T. Basidiomycetous yeast of the genus Mrakia . In Tiquia-Arashiro SM, Grube M. (editors) Fungi in Extreme Environments: Ecological Role and Biotechnological Significance Elsevier: Amsterdam; 2019b pp 145–156
    [Google Scholar]
  15. Margesin R, Fauster V, Fonteyne P-A. Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida . Lett Appl Microbiol 2005; 40:453–459 [CrossRef][PubMed]
    [Google Scholar]
  16. Singh P, Singh SM. Characterization of yeast and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic. Polar Biol 2012; 35:575–583 [CrossRef]
    [Google Scholar]
  17. de Garcia V, Zalar P, Brizzio S, Gunde-Cimerman N, van Broock M. Cryptococcus species (Tremellales) from glacial biomes in the southern (Patagonia) and northern (Svalbard) hemispheres. FEMS Microbiol Ecol 2012; 82:523–539 [CrossRef][PubMed]
    [Google Scholar]
  18. Panikov NS, Sizova MV. Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to -35 degrees C. FEMS Microbiol Ecol 2007; 59:500–512 [CrossRef][PubMed]
    [Google Scholar]
  19. Dhume GM, Maharana AK, Tsuji M, Srivastava AK, Singh SM. Cold-tolerant endoglucanase producing ability of Mrakia robertii A2-3 isolated from cryoconites, Hamtha glacier, Himalaya. J Basic Microbiol 2019; 59:667–679 [CrossRef][PubMed]
    [Google Scholar]
  20. de García V, Brizzio S, Libkind D, Buzzini P, van Broock M. Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiol Ecol 2007; 59:331–341 [CrossRef][PubMed]
    [Google Scholar]
  21. Pathan AAK, Bhadra B, Begum Z, Shivaji S. Diversity of yeasts from puddles in the vicinity of midre lovénbreen glacier, Arctic and bioprospecting for enzymes and fatty acids. Curr Microbiol 2010; 60:307–314 [CrossRef][PubMed]
    [Google Scholar]
  22. Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G et al. Psychrophilic yeasts in glacial environments of alpine glaciers. FEMS Microbiol Ecol 63:73–83 [CrossRef]
    [Google Scholar]
  23. Sannino C, Borruso L, Smiraglia C, Bani A, Mezzasoma A et al. Dynamics of in situ growth and taxonomic structure of fungal communities in alpine supraglacial debris. Fungal Ecol 2020; 44:100891 [CrossRef]
    [Google Scholar]
  24. Tsuji M, Yokota Y, Shimohara K, Kudoh S, Hoshino T. An application of wastewater treatment in a cold environment and stable lipase production of Antarctic basidiomycetous yeast Mrakia blollopis . PLoS One 2013a; 8:e59376 [CrossRef][PubMed]
    [Google Scholar]
  25. Kurtzman CP, Fell JW, Boekhout T. The Yeast, a Taxonomic Study, 5th ed. Amsterdam: Elsevier; 2011
    [Google Scholar]
  26. Valente P, Boekhout T, Landell MF, Crestani J, Pagnocca FC et al. Bandoniozyma gen. nov., a genus of fermentative and non-fermentative tremellaceous yeast species. PLoS One 2012; 7:e46060 [CrossRef][PubMed]
    [Google Scholar]
  27. De Francesco G, Sannino C, Sileoni V, Marconi O, Filippucci S et al. Mrakia gelida in brewing process: an innovative production of low alcohol beer using a psychrophilic yeast strain. Food Microbiol 2018; 76:354–362 [CrossRef][PubMed]
    [Google Scholar]
  28. Tsuji M, Singh SM, Yokota Y, Kudoh S, Hoshino T. Influence of initial pH on ethanol production by the Antarctic basidiomycetous yeast Mrakia blollopis . Biosci Biotechnol Biochem 2013b; 77:2483–2485 [CrossRef][PubMed]
    [Google Scholar]
  29. Tsuji M, Kudoh S, Hoshino T. Ethanol productivity of cryophilic basidiomycetous yeast Mrakia spp. correlates with ethanol tolerance. Mycoscience 2016; 57:42–50 [CrossRef]
    [Google Scholar]
  30. Tsuji M, Goshima T, Matsushika A, Kudoh S, Hoshino T. Direct ethanol fermentation from lignocellulosic biomass by Antarctic basidiomycetous yeast Mrakia blollopis under a low temperature condition. Cryobiology 2013c; 67:241–243 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004336
Loading
/content/journal/ijsem/10.1099/ijsem.0.004336
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error