1887

Abstract

Novel aerobic, restricted facultatively methylotrophic bacteria were isolated from buds of English oak ( L.; strain Dub) and northern red oak ( L.; strain KrD). The isolates were Gram-negative, asporogenous, motile short rods that multiplied by binary fisson. They utilized methanol, methylamine and a few polycarbon compounds as carbon and energy sources. Optimal growth occurred at 25 °C and pH 7.5. The dominant phospholipids were phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol and phoshatidylglycerol. The major cellular fatty acids of cells were C ω7, 11-methyl C ω7 and C. The major ubiquinone was Q-10. Analysis of 16S rRNA gene sequences showed that the strains were closely related to the members of the genus : S113(97.5–98.0 %), S1 (97.4–97.6 %) and PG04(97.0–97.2 %). The 16S rRNA gene sequence similarity between strains Dub and KrD was 99.7 %, and the DNA–DNA hybridization (DDH) result between the strains was 85 %. The ANI and the DDH values between strain Dub and S113 were 80.1 and 21.5  %, respectively. Genome sequencing of the strain Dub revealed a genome size of 3.57 Mbp and a G+C content of 67.0 mol%. Based on the results of the phenotypic, chemotaxonomic and genotypic analyses, it is proposed that the isolates be assigned to the genus as sp. nov. with the type strain Dub (=VKM B-3284=CCUG 73648=JCM 33463).

Funding
This study was supported by the:
  • Российский Фонд Фундаментальных Исследований (РФФИ) (Award 18-34-00998 mol_a)
    • Principle Award Recipient: Nadezhda V. Agafonova
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004323
2020-07-15
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/8/4646.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004323&mimeType=html&fmt=ahah

References

  1. Ivanova E, Doronina N, Trotsenko Y. Hansschlegelia plantiphila gen. nov. sp. nov., a new aerobic restricted facultative methylotrophic bacterium associated with plants. Syst Appl Microbiol 2007; 30:444–452 [View Article][PubMed]
    [Google Scholar]
  2. Ivanova E, Doronina N, Trotsenko Y. Hansschlegelia plantiphila gen. nov., sp. nov. in list of new names and new combinations previously effectively, but not validly, published, validation List no. 133. Int J Syst Evol Microbiol 2010; 60:1009–1010
    [Google Scholar]
  3. Bowman JP, Sly LI, Nichols PD, Hayward AC. Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 1993; 43:735–753 [View Article]
    [Google Scholar]
  4. Webb HK, Hg HJ, Ivanova EP. The Family Methylocystaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes Berlin, Heidelberg: Springer; 2014
    [Google Scholar]
  5. Wen Y, Huang X, Zhou Y, Hong Q, Li S. Hansschlegelia zhihuaiae sp. nov., isolated from a polluted farmland soil. Int J Syst Evol Microbiol 2011; 61:1114–1117 [View Article][PubMed]
    [Google Scholar]
  6. Zou X-L, Li X-A, Wang X-M, Chen Q, Gao M et al. Hansschlegelia beijingensis sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic bacterium isolated from watermelon rhizosphere soil. Int J Syst Evol Microbiol 2013; 63:3715–3719 [View Article][PubMed]
    [Google Scholar]
  7. Doronina NV, Kaparullina EN, Trotsenko YA. Methyloversatilis thermotolerans sp. nov., a novel thermotolerant facultative methylotroph isolated from a hot spring. Int J Syst Evol Microbiol 2014; 64:158–164 [View Article][PubMed]
    [Google Scholar]
  8. Doronina NV, Trotsenko YA, Tourova TP, Kuznetsov BB, Leisinger T et al. Albibacter methylovorans gen. nov., sp. nov., a novel aerobic, facultatively autotrophic and methylotrophic bacterium that utilizes dichloromethane. Int J Syst Bacteriol 2001; 51:1051–1058
    [Google Scholar]
  9. Collins MD. Gottschalk G. editor Analysis of Isoprenoid Quinones. Methods in Microbiology 18, 2nd ed. New York: Acad Press; 1985 pp 329–366
    [Google Scholar]
  10. Kates M. Techniques of Lipidology New York: American Elsevier Publishing Co., Inc; 1972
    [Google Scholar]
  11. Lane DJ. Stackebrandt E, Goodfellow M. (editors) 16S/23S rRNA sequencing in nucleic acid techniques in bacterial systematics Chichester: John Wiley and Sons; 1991 pp 115–175
    [Google Scholar]
  12. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  13. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  15. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  16. Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 2001; 56:2.4.1–2.4.2 [View Article][PubMed]
    [Google Scholar]
  17. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  18. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  19. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Ciufo S et al. Prokaryotic Genome Annotation Pipeline. The NCBI Handbook [Internet], 2nd ed.. Bethesda, MD: NCBI; 2013
    [Google Scholar]
  20. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J Preprints 2016; 4:e1900v1
    [Google Scholar]
  21. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  22. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  23. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2020; 36:1925–1927
    [Google Scholar]
  24. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article][PubMed]
    [Google Scholar]
  25. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article][PubMed]
    [Google Scholar]
  26. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article][PubMed]
    [Google Scholar]
  27. Hoang DT, Vinh LS, Flouri T, Stamatakis A, von Haeseler A et al. MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation. BMC Evol Biol 2018; 18:11 [View Article][PubMed]
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  29. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article][PubMed]
    [Google Scholar]
  30. Fedorov DN, Doronina NV, Trotsenko IA, YuA T. [Phytosymbiosis of aerobic methylobacteria: New facts and views ]. Mikrobiologiia 2011; 80:443–454 [View Article][PubMed]
    [Google Scholar]
  31. Tani A, Sahin N, Fujitani Y, Kato A, Sato K et al. Methylobacterium species promoting rice and barley growth and interaction specificity revealed with whole-cell Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF/MS) Analysis. PLoS One 2015; 10:e0129509 [View Article][PubMed]
    [Google Scholar]
  32. Doronina NV, Torgonskaya ML, Fedorov DN, Trotsenko YA. Aerobic methylobacteria as promising objects of modern biotechnology (review). Appl Biochem Micro 2015; 51:125–134 [View Article]
    [Google Scholar]
  33. Anthony C, Williams P. The structure and mechanism of methanol dehydrogenase. Biochim Biophys Acta 2003; 1647:18–23 [View Article][PubMed]
    [Google Scholar]
  34. Agafonova NV, Kaparullina EN, Doronina NV, Trotsenko IA. [Phosphate-solubilizing activity of aerobic methylobacteria]. Mikrobiologiia 2014; 83:28–32[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004323
Loading
/content/journal/ijsem/10.1099/ijsem.0.004323
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error