1887

Abstract

A novel moderately halophilic, filamentous actinobacterium, designated as XMNu-373, was isolated from a saline–alkaline soil sample collected from the Mongolia Plateau, Dongwu County, Inner Mongolia Autonomous Region, PR China. The isolate grew optimally at 28‒37 °C, pH 7.0‒8.0 and with 2–5 % (w/v) NaCl. The substrate mycelia fragmented into rod-like elements, and the white aerial mycelia formed spore chains at maturity. The predominant menaquinone was MK-9(H). The polar lipids were diphosphatidylglycerol, three unidentified phosphoglycolipids, an unidentified aminophospholipid, two phosphatidylinositol mannosides, four unidentified phospholipids, phosphatidylglycerol and two unidentified lipids. The major cellular fatty acids were iso-C, anteiso-C and anteiso-C. The genomic DNA G+C content was 66.2 mol%. It shared high 16S rRNA gene sequence similarities to YIM 96448 (96.1 %) and EGI 60009 (96.0 %). Phylogenetic trees based on 16S rRNA gene sequences revealed that strain XMNu-373 resided in the clade of family , and it formed a monophyletic branch distinct from four other recognized type species in the subclade of the genus . On the basis of polyphasic taxonomic evidence, strain XMNu-373 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is XMNu-373 (=JCM 33740=CGMCC 4.7654).

Funding
This study was supported by the:
  • National College Students Innovation and Entrepreneurship Training Program (Award 201910092005)
    • Principle Award Recipient: Xue-Han Zhai
  • Sino-Hungarian Bilateral S&T Cooperation Projects from 2019 to 2020 (Award Chinese Project: 8-11; Hungarian project: 2018-2.1.14-TÉT-CN-2018-00021)
    • Principle Award Recipient: Cheng-Hang Sun
  • Natural Science Foundation of Hebei Province (Award C2017405031)
    • Principle Award Recipient: Xiao-Jun Li
  • National Natural Science Foundation of China (Award 81703476)
    • Principle Award Recipient: Xiao-Jun Li
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004274
2020-06-19
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/7/4179.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004274&mimeType=html&fmt=ahah

References

  1. Li L, Ma J-B, Abdalla Mohamad O, Li S-H, Osman G et al. Phytoactinopolyspora endophytica gen. nov., sp. nov., a halotolerant filamentous actinomycete isolated from the roots of Glycyrrhiza uralensis F. Int J Syst Evol Microbiol 2015; 65:2671–2677 [View Article][PubMed]
    [Google Scholar]
  2. Zhang Y-G, Lu X-H, Ding Y-B, Zhou X-K, Li L et al. Phytoactinopolyspora alkaliphila sp. nov., an alkaliphilic actinomycete isolated from a saline-alkaline soil. Int J Syst Evol Microbiol 2016; 66:2058–2063 [View Article][PubMed]
    [Google Scholar]
  3. Ji Y, Chunyu W-X, Li E-Y, Ding Z-G, Yin M et al. Phytoactinopolyspora halotolerans sp. nov., a halotolerant actinobacterium isolated from a saline soil in Xinjiang, northwest of China. Antonie van Leeuwenhoek 2018; 111:27–34 [View Article][PubMed]
    [Google Scholar]
  4. Ding Z-G, Ji Y, Yin M, Zhao Y-R, Feng Y-Z et al. Phytoactinopolyspora halophila sp. nov., a halophilic actinomycete isolated from a saline soil. Int J Syst Evol Microbiol 2019; 69:384–389 [View Article][PubMed]
    [Google Scholar]
  5. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF. A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg 1975; 130:341–346 [View Article][PubMed]
    [Google Scholar]
  6. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  7. Atlas RM. Handbook of Microbiological Media. Edited by L. C. Parks Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  8. Kelly KL. Inter-Society Color Council‒National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  9. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  10. Cappuccino JG, Sherman N. Microbiology: a Laboratory Manual, 6th ed. San Francisco: Benjamin Cummings Pearson Education; 2002
    [Google Scholar]
  11. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article][PubMed]
    [Google Scholar]
  12. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI inc; 1990
    [Google Scholar]
  13. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  14. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  15. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [View Article][PubMed]
    [Google Scholar]
  16. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article][PubMed]
    [Google Scholar]
  17. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  18. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-Layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 1980; 188:221–233 [View Article]
    [Google Scholar]
  19. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  20. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for window 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  27. Chen Y, Chen Y, Shi C, Huang Z, Zhang Y et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 2018; 7:1–6 [View Article][PubMed]
    [Google Scholar]
  28. Li R, Li Y, Kristiansen K, Wang J. Soap: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article][PubMed]
    [Google Scholar]
  29. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article][PubMed]
    [Google Scholar]
  30. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  31. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009; 19:1117–1123 [View Article][PubMed]
    [Google Scholar]
  32. Lin S-H, Liao Y-C. CISA: contig integrator for sequence assembly of bacterial genomes. PLoS One 2013; 8:e60843 [View Article][PubMed]
    [Google Scholar]
  33. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article][PubMed]
    [Google Scholar]
  34. Avram O, Rapoport D, Portugez S, Pupko T. M1CR0B1AL1Z3R-a user-friendly web server for the analysis of large-scale microbial genomics data. Nucleic Acids Res 2019; 47:W88–W92 [View Article][PubMed]
    [Google Scholar]
  35. Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article][PubMed]
    [Google Scholar]
  36. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004274
Loading
/content/journal/ijsem/10.1099/ijsem.0.004274
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error